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Unit 1
Vector Functions

If for each value of a scalar variable u, there corresponds a vector f, then f is said to be

a vector function of the scalar variable u. The vector function is written as f(u).

Eg., The vector (acosw)i+(b sinu)] + (bw)k is a vector function of the scalar variable u.
Limit of a vector function
A vector v, is said to be the limit of the vector function f(u), if Jlrﬂolf(u) — vyl = 0.
e, lim f(u) = v,.
u-u,
Derivative of a vector function
A vector function f(u) is said to be derivable or differentiable with respect to u, if

lim ~ (u+Auw)—f (W)

Alm ™ exists. This limit is called the derivative or differential coefficient of f(u)
u-—

with respect to u and is denoted by %.

Note 1 : If f(u) is a constant vector, then its derivative is a zero vector because f(u + Au) —

f(u) =0.

Note 2 : If f(u+ Au) is written as f(u) + Af then f(u+ Au) — f(u) = Af and %=

A
im —f.
Au—0 Au
Theorem 1 :
. ) ) d d
Q) If @ is a scalar function of u and ‘a’ a constant vector, then —Sia):a ﬁ
.. ) . d g - d
(i) If “a’ is also a function of u, then 400 B0 5 4 ple,
du du
Proof :
. d . A
(N We have & = 1im 2L
du Au—0Au
. . - . AR)—
Now, 40D _ |j A@D_ i @+80)a-0a_ |, [@+20)-0la
d Au—0 Au Au—0 Au Au—0 Au
AQ do

= lim —a=—a
Au—0 Au du
.. d . A . A Aa)—
(") Now, (9a) — lim ((Da): lim (0+A0)(a+Aa)—0a
du Au—0 Au  Au—0 Au

. Qa+ QAa+ aAd + AQ - Aa — Da
= lim
Au—0 Au




51 Aa y AQ | (DA
= Ol i e A 8

Aa [0) 1)
—(2511m—+a11m—+1m— lim Aa
Au—0 Au Au—0 Au Au—0 Au  Au—0

=@ lim22 +q lim 22 (since, lim Aa = 0)
A Au—0

Au—0 Au Au—0 Au

Theorem 2 : If A and B are functions of scalar variable u, then prove that (i) ——= d(A+B) E +
a5 (i) LLB) B+A and(l )M ><B+A><—.
du du
Proof : (i) d(A+B) — lim (A+AA)+(B+AB)—(A+B)
Au—0 Au
 A+AA+B+AB—-A-B ~ AA+AB AA AB
= lim = lim ——— = lim —+ lim —
Au—0 Au Au—~0  Au Au—-0Au  Au-0 Au
dA dB
du du
(iii) d(4B) _ lim (A+AA)-(B+AB)—(AB)
du Au—0 Au
~ AB+AAB+AA-B+AA-AB — (AB)
= lim
Au—0 Au
li AAB li AAB | AAB
= Am Ay T M ay B dim (i AB)
—llmA + lim —B+ llm— lim AB
Au—0 Au u—>0 Au Au—0 AU Au—0

=lim A22 + lm—B (Since, llm AB = 0).

Au—0 Au Au—0

Al AB 1 AAB dAB AdB
- A&TOE-I_A}LTOE T du du

Similarly do the (iii) part.

Problem 1 : Find the derivatives of 4 - B and 4 x B with respect to u if 4 = u7 + uj + 2uk

and B = j — uk.
Solution : (i) Find == (4 - B)

/T-ﬁz(u2?+uf+2uE)-(f—uE)=0+u—2u2=u—2u2



d - - d
_ . - —_ 2y — 1 —
Tu (A B) T (u—2u?)=1-4u

(i) Find = (4 x B)

- — i) ]_) ig
AXB=12 4y 2u
0 1 —-u

(Ans. ) (-2u-2) 7+3u? j+2uk
Scalar point functions

If for every point P in a domain D of space, there corresponds a scalar @ then @ is said
to be a single valued scalar point function defined in the domain D. The value of @ at P is
denoted by @(P) (or) @(x,y,z)if Pis (x,y,z). The function @ is said to be the scalar field
in D.

Vector point function

If for every point P in a domain D of space, there corresponds a vector @ then @ is
said to be a single valued vector point function defined in the domain D. The value of @ at P
is denoted by @(P) (or) @(x,y,z)if Pis (x,y,z). The function @ is said to be the vector
field in D.

Level surfaces

The surfaces represented by the equation @ = ¢ for different values of c are called

level surfaces. No two level surfaces will intersect each other.
Directional derivative of a scalar point function

The directional derivative of @ at any point P in the direction specified by the direction

. . .9 d G}
cosines [, m, n is l—qj + m—® + n—m.
ax ay dz

Gradient of a scalar point function

29

If @ is a scalar point function, then the vector %?+ ) + %l? is called the gradient

of @. This vector is written as grad® or V@ where V (read as ‘del” or ‘nebla’) stands for ?aa—x +

The operator V is an operator whose function is to transform a scalar point function @ into

a vector point function.



Note 2

The summation notation for gradient is V@ = Z*aw

The directional derivative of @ in the direction specified by the unit vector € is Vo - e.

Let the direction cosines of & is [, m,n. Then é = IT + mj + nk.

—(%2> @* 9 29
Now, V@ - & (axl+ + k) (ll+mj+nk)l + y+naz

which is the directional derivative of @ in the direction whose direction cosines are [, m, n.
Note : Maximum value of the directional derivative of @ is |V@|.

Theorem

If @ and 1 are scalar point functions, then prove that

(i) V(k®) = k(VQ) where k is a constant
(i) VO@+¢)=Vo+Vy
(i)  v(ey) = (VO)y + (V)
. 8\ _ p(Ve)-o(vy)
() 7 (2)=rre-ows,
Proof : (i) V(kg) = %1292 = 517k 22 = k 722 = k(V0)
(ii) As in proof (i)
(il V(0y) = B120R = RIGoy + 85D = DIy + X103

=P RI2+ 9N 1%L = (VO + B(VY)
(iv)  As in proof (iii).

Problem 2 : Find the directional derivative of x + xy? + yz3 at the point (0,1, 1) in the
direction whose d.c’s are 2/3, 2/3, -1/3

Soln: Let® = x + xy? + yz3

. a9 09 099
Fi dax'ay'az

Givenl=2/3,m=2/3andn=—-1/3

o . .. . -8 a a
The directional derivative is [ 99 + m—qj + n_m
0x dy 0z

=§ 1+yH)+ g (2xy + z3) — yz2.



At the point (0,1,1) [Ans. 1]
Problem 3. Find V@ at (x,y,2) if @ = x + xy? + yz3

Problem 4: Find the directional derivative of @ = 3xy? — x%yz at the point (1,2,3) in the

direction of the vector 7 — 2j + 2k.

{Hint : Find V@ then find & as 57— = + k. then find V@ - €. Ans. : -22/3}

w N

Problem 5: Find the directional derivative of @ = x3 + y3 + 23 at the point (1,-1,2) in the

direction of the vector 7 + 2j + k. {Ans. %}

Problem 6: If # = xT + yj + zk (i.e.,) if 7 is the position vector of the variable point (x,y,2)

and [¥| = r. Show that () 7 () = —Zand (i) V(F(r) = £ (7.

Proof : Given 7 = xT + yJ + zk.

|7l =7=x2+y2+ 22 (ie.,)r2 =x% +y?> + 22
Differentiating partially with respect to x. ng—; =2x. ~—=*=

.. ar _y or _ z
Similarly, 3 1 and Pl

oot o107 (2) = (1475 +£2) () = 2) +720) + 20

B 1_,(07") 1_,(61") 1l_€(ar>_ 19x+9y+lzz
T2 \ax) T 2! dy) 12 \oz) rz(lr 5 r)

1, . >
:_r_3(xl+y]+2k):_r_3

(i) T.P.V(F (1) = f' (7.

V(@) = (15 +7 5+ E5) G = T (FON +T 5 (FE) + kL (F(r)  (complete

y

the problem) {Hintg =7}

Problem 7 : If V@ = 5737 then find .

7

Solution : We have, - = F=>7=rf

~ V@ = 5r3rf = 5rf



We have, V@ = @' (r)#
2 VO = @' (1) = 5r4f
o @' (r) =57t
Integrating with respecttor [ @'(r)dr = [ 5r*dr
() = +cie, () =15 +c.
Problem 8: 1f V@ = (6r — 3r%)7 and ¢(2) = 4 then find @.
{Hint : Find the value of c using the condition @#(2) = 4. (Ans. 8(r) = 2(r3 — r* + 10).

Problem 9 : If # = xT + yj + zk (i.e.,) if ¥ is the position vector of the variable point (x,y,2)

and |¥] = r, then show that

(i)  V(ogr)=
(i) vrt=nr*1% = nr %
(iii) V(#-a) =d where ais a constant vector.

(iv) V(@7 =2aifd= axi+Byj+yzk.
Proof : Given 7 = x7 + yj + zk.
=r=,x2+y2+2z2(i.e.,)r> =x%+y?+z°

Differentiating partially with respect to x. ZrZ—; =2x. ~—==

. ar _Y or _

Similarly, 3 = and — =
. 2 [ -3 78

Q) V(logr) = (la +]£ + kg) (logr)

6 (logr) +] (logr) + k—(logr)

(1 6r>+e(1 6r>+l_€<1 (’)r)
r ox J r dy r oz

_1_,(6r>+1 (6r>+1l_€<6r>_1 9x+9y+l;z
_rl 0x J dy) r \oz) (lr ]r r)

Il
~i

=—(xl+y]+zk)—

(i) As in the part (i)
(i) TP.VEF-a)=ada



-

Given a is a constant vector. « @ = a,i+ a,j + ask and
= xT+y] + zk

7ed=(xi+y]+ Zig) (a T+ ay] + ask) =a,x + a,y +asz

V(7. d) = <a ;9 *a) +a,y+
r-a)= la jay 57 (a1x + a,y + a3z)

L0 0 - 0
6_ (a1x + ay,y + a3z) +] (alx +a,y+azz) + k (alx + a,y +asz)

= a1f+ a27+ a3k = C_i

(iv)  Asin the part (iii)

Problem 10: If V@ = (y + y?2 + z)T+ (x + z + 2xy)] + (y + ZZX)I_{) and if ¢(1,1,1) =
3,find Q.

Solution :Given, V@ = (y + y2 + z2)i+ (x + z + 2xy)] + (v + 2zx)k ..... (1)

We have, v¢=g—f?+g—ij+‘;—jﬁ ......... @)

From (1) and (2) we have g—i =W+y+2z%)...03)
9 _ 29 _
5—(x+z+2xy) ..... (4)&az—y+22x ...... (5)

Integrating (3) w.r.to x, @ = yx + y%x + xz2 + f(y,2) ....... (6)
Integrating (4) w.r.toy, @ = xy + zy + xy? + g(x,2) ...... (7
Integrating (5) w.rto z, @ = yz + z%2x + h(x, y)....... (8)

From (6), (7) and (8) we get, @ = yx + y?x + xz?> + yz+ ¢
Given,®(1,1,1) = 3. Therefore, 1+1+1+1+c=3 => ¢ = —1

Hence, @ = yx + y2x + xz% + yz — 1.

Problem 11 : Find @ if V@ is (6xy + z3)7 + (3x2 — 2)] + (3xz% — y)k
(Ans. : 3x%y + xz3 —yz + ¢)

Problem 12 : Find the unit vectors normal to the following surfaces.

(i) x2+2y?+z2=7at(1,-12)

l+]k
=1

i+k

(iii)  x?+3y%?+2z% =6at (2,0,1) [Ans. —]

(i)  x*+y?—z%2=1at(1,1,1) [Ans.

Solution : (i)Let @ = x%2 + 2y% + z2 — 7



VO = 2xT + 4y] + 2zk
At (1,-1,2),V0 = 27 — 4] + 4k
V@] = 6 (Verify)
Ve 1-2j+2k

Unit vector normal to the surface = ol T~ 3

(ii) & (iii) As in 1* part.

Problem 12 : Find the equation of the tangent plane to the surface x? + 2y% + 3z2 =6 at
the point (1,-1,1).

Sol. : Let # = xT+ yJ + zk
Let® = x? +2y%2+3z2—6
VO = 2x7 + 4y] + 62k
At (1,-1,1),V0 = 27 — 4] + 6k=P
Let 7 =0—j+k
Equation of the tangent plane is (F — 77) - P = 0
x-2y+3z-6=0 (Verify)

Problem 13 : Find the equation of the tangent plane to the surface x? —4y2+3z2+4 =0
at the point (3,2,1). [Ans. 3x-8y+3z+4=0]

Problem 14 : Find the angle between the normals to the surface xy — z? = 0 at the points
(1,4,-2) and (-3,-3,3)

Solution : First find V@ at the points (1,4,-2) and (-3,-3,3).

—

At (1,4,—2),V0 = 47+ ] + 4k & At (—3,-3,3),Vp = —37 — 3] — 6k

. 47+]+4k)-(—31-3j-6k -13
If 6 is the angle between the normals then cosg = (L4 (C3i-37-6k) _
V16+1+161/9+9+36 3v22

Problem 15: Show that the surfaces 5x% — 2yz —9x = 0 and 4x?y+2z3—4=0 are
orthogonal at (1,-1,2).

Soln. : - Let @; = 5x% — 2yz —9x and @, = 4x%y + z3 — 4
VO, = (10x — 9)7 — 22] — 2yk & V@, = 8xyi + 4x%] + 322k (verify)

At (1,-1,2) V@, =T — 4] + 2k & VD, = —87 + 4] + 12k (verify)



(VD) - (V8,) = (T — 4] + 2k ) - (=81 + 4] + 12k ) = 0 (verify)
Thus the given two surfaces are orthogonal.

Problem 16: Find the angle between the normals to the intersecting surfaces xy — z% — 1 =
0 and y2—3z—1=0 at (1,1,0). Also find a unit vector along the tangent to the curve of

intersection of the surfaces at (1,1,0).

Soln. : As in the previous problem find V@, & V@, at (1,1,0)
VO, =T+ ]&VD, = 2] — 3k
Letd =7+ &b =2 — 3k

Let 8 bet the angle between the normals to the surfaces.

Qu
S

ﬁ’N
(o))

s cosO = =

Qi
=

o

ax

Unit Vector along the tangent =

=

|@x

dxb=|[1 1 o|=-30+37+2kand|dx b| =22 (Verify)
0 2 =3
. _ —31+3j+2k
Thus the unit vector along the tangent = s

Problem 17: Find the direction in which @ = xy? + yz? + zx? increases most rapidly at the
point (1,2,-3).

Soln. : Find V@ at (1,2,-3)
Direction of V(xy? + yz?2 + zx?2) = —27 + 13] — 11k.

Divergence of a vector point function

vy avy | Vs .
L4242 s

If V=V,i+V,j+ V3k is a vector point function, then the scalar xta T

called the divergence of V and is denoted by divvy  (or) V- V.

If V-V = 0 then the vector V is said to be solenoidal.

The summation notation for divergenceis V-V = Y1+ Z_Z'

Curl of a vector point function



If V = V,7+ V,] + Vsk, then the vector z(a‘;3 - aﬁ) +

> [0V oV > (0V; v
-5 (2 -5)
0z 0z ox ox dy

is called the curl of V and is denoted by curlV (or) V x V.

T j Ok
Now, V XV = s 92 29
dx dy 0z
v, V, Vi

If VX V = 0 then the vector V is said to be irrotational.

Note 1 : The divergence of a vector point function is a scalar and the curl of a vector point

function is a vector.
V.v=1.V79
Note2:V-V=V Zlax

Theorem 1 : If A and B are vector point functions, ‘@’ a scalar point function and ‘k’ a

constant then, (i) V- (A+ B) =V A+ V- B (i) V- (k4) = k(V- 4)
(iii) V - (0A)=(VQ) - A+ B(V-A) (V) VX (A+B)=VxA+VxE
(V) V x (kA) = k(V x A) (vi) V x (8A)=(VQ) X 4 + @(V x A)

(VY- (A+B) =y7.20484B) _go 04 0By 5o 94 o 9B
Proof: (i) V- (A+B) = X1 o =21 (ax+ax)—ZL ax-l-ZL o
=V-A+V-B

. . > _ _>_6(k/_l))_ _>_8_/_1) . . _ . -,
(i) V- (kA) = %1 — = kX1 -"[Since, k is a constant]= k(V - 4)

(i) V- (04) =212 = 57 (241 0P =51 L4+ 5108

-

=RiZ-A+o%i- ‘“—(v@) A+0(V-R)

°’|s

(iv), (v) & (vi) are H.W.
Theorem 2 : If A and B are vector point functions then,

() V(A-B)=Ax(VxB)+(A-V)B+Bx (VxA)+(B-V)A
(i) V-(AxB)=(VxA)-B—(VxEB)-A
(i) Vx(AxB)={(B-V)A-(v-A)B}-{(A-V)B—(V-B)A}

Proof : (i) V(K-ﬁ)zZ?-a(g'§)=Z?[g—f B+A- Z—E] i [— B]+Z?[E-



Now,ﬁx(?xg—z)z (ﬁ-‘;—z)?—(ﬁ-?)g—i
(Using, @ x (b x &) = (@ &)b — (- b)})
Ex(?xi—z)+(ﬁ-ag—i=(ﬁ-z—i)?

Taking summation on both sides.

) 0B\ . _ 0B . 0B

=AX(VXB)*(A VB oo, )
Interchanging Aand B, we get
SI(B- )0 =B x (VX DB DA o 3)
Put (2) and (3) in (1) we get,
V(A-B)=Ax (VxB)+(A-V)BE+Bx (VxA)+(B-V)A

(i) v-(AxB) =51 228 =57 (U xF+ ix2)

L dx
—Z* agxﬁ +Z* /Txag —Z* agxﬁ Z* aﬁxﬁ
B ' (6x ) e 6x)_ ' 0x ' (Ox )
> = > 0B = .
=sz(—-B>—le(a-A) [Interchanging dot and cross]
- aA) — N a§ - —> — — -
=Z ix = -B—Z(txa)-A=(V><A)-B—(V><B)-A
i) Vx (AxB)=3ix2 LD =5ix (2 x5 +Ax2L)

=37 x (ﬁx§)+22x(ﬁxaﬁ)

0x



:zzx(“ B) - ZlX(—XA) ...................... (1)

Now,?x( ) (T B)——( ;)E

ox

=3B )23 DE=F 2% -3(-X)E

Interchanging A & B we get, Y. 7 x (g X /T) =(A-V)B—(V-B)A ... (3)
Put (2) and (3) in (1) we get the result.

Laplacian Differential operator

The operator V? defined by V?= + —+ ﬁ is called Laplacian
differential operator.
Laplace Equation
: 20 = 0 (1o, 204 20 2% _ is said to satisfi
If @ is such that V@ = 0 (i.e.,o—= + 52 Yo = 0) the @ is said to satisfied
Laplace equation.

Harmonic function

A single valued function f(x,y,z) is said to be a harmonic function if its
second order partial derivative exists and are continuous and if the function satisfies the

Laplace equation V2 f = 0.
Theorem 3 : If @ is a scalar point function then,

(i) Divergence of the gradient of @ is V2@ i.e., V- (VQ) = V20
(i)  Curl of the gradient of @ vanishes. (i.e.,) V x (V@) = 0.

Proof :
()  We have, V@ = Z@+j@+k—
,d 0 >0 L0 00 00
V'V@—(la— @ ka—> (ai‘]@-l-kg



0’9 0%¢ 0%Q

— — 72
"oz T oz Tz = VP
7R
ad ad a N N
(i) VX(V®)=|or 35 3;|=00+ 0]+ 0k =0 (Verify)
a9 09 00
ox 0y oz

Theorem 4 : If A = A,7 + A,J + Ask where A;, A,, A5 have continuous second partials, then

divergence of a curl of a vector vanishes. i.e., V- (V x 4) = 0

(i)
(i) Vx(VxA4A)=v(v-4)-v*4
T 7k
Proof: (i) Vx A=|2 2 2
ax dy oz
A, A, A,
_5(0A3 0Ay\ o(0A3 0Ay\ |, 7 (04 0A;
=15 -5 TG ) R (5%
D= (72 472 L B2 [p(24a _ 242 _ (24 _ 241\ | (94 _ 04y
v (VXA) (lax+J8 +kaz) [l(ay az) ](ax az)+k(ax ay)]
_0%43 0%4; 0%43 | 0%A, | 0%4A; 0%A; _
- d0xdy 0x0z 0x0y dydz 0x0z 0ydz -
iy vxd=i(5-) -7 (5T +R (-5
i 7 k
0 0 0
Vx (VxA)= P) dy 0z
04; 04, (6A3 6A1> 04, 04,
dy 0z d0x 0z dx dy
[ (EJAZ 6A1> N d ((’)A3 E)Al)] R
3y 3y 7\ ox 9z J e
z 0%4, 62A1 62A3 0%4,
6xay axaz 0z?
z 0%A, 62A3 024, 0%A,
6xay 0x0z dy? = 0z?
B Z_, 0%4, N 024, N 024, 0%4, 024, 0%A,
~ L. oxay Taxdz T axz  axz  \9y? | az2




924, . 924, . 024, (324, . 924, . 924,
0xdy 0xdz  0x? d0x? ~ 0dy? = 0z?

=ZZ

[0 (04, 04, 04y (924, %4, 0%A,
= z i —( -4 ) - +——4

ox\dy 0z ox ox? = dy? = 0z2
C.0 (04, 04, 04, 024, %A, 0%4A,
‘Zlax( ax Ty T az)_Z‘ oz Ty T o)

=Yi(V-4) - V?A=v(v-A) - V4.
Problem 18 : Show that the vector 4 = x2z27 + xyz?2j — xz3k is solenoidal.
Solution : (To show that V - 4 =0)
Problem 19: I the vector 3x7 + (x + y)j — azk is solenoidal, find a.
Solution : Let A = 3x7+ (x +y)] — azk
Given 4 is solenoidal. Therefore, V - 4 =0
ie., (?aa—x +faa—y + E;—Z) -(3xT+ (x +¥)f — azE) =0

d(3x) + a(x+y) _ d(az) _

x ay 0z 0

ie.,
i.e., 3+1-a=0 =>a=4.
Problem 20 : If # = x7 + yj + zk, Show that V - # = 3.

Solution : Given # = x7 + yJ + zk
3y + (')Z) (xT + yJ + zk)

_3) , 90)  9)

5x Ty, oy S Ltlt1=3

Problem 21 : If ¥ = xT+ yj + zk and r = |?| show that V - (*#) = (n + 3)r™
Solution : V- (r™7) = V™) 7+ 1r"(V 1) o, (1)

a(rm) N Lorm) N Ea(r")

ny —7
ver) “ox T dy 0z

=Tnr*1 or + jnrnl or + knrn1 or
0x dy 0z



. S A
=mr" =+ nr* 1= 4 knrttl-
T T T

= nr"2(Tx + jy + kz) = nr" %7
S =>V0) = (D) + "3 = A (- 7F) + "3
=nr"2r2 + "3 =nr*+1r"3 = (n + 3)r"

2

Problem 22 : Show that V - (r—lj) =0&V-#==

r

Solution : V- (57) = V() 7+ 5 (V7)o (1)
1 1 1

V(i)ﬂa(r—s)Jr () 9(5)
r3 dx J ay 0z

_4( 3>6r %< 3)6r ﬁ( 3)ar

— N\ 7)o 4) dy r*) 0z

r
1 , ,
V(;) =—37 (Verify)
1, 1\ , 1 1 3 2
V-(—r)z(——r)-r+—3=——><r2+—=—
r r3 r r3 ror

Problem 23 : If ¥ = xT+ yj + zk and r = |#| show that

V-(fM7) =7rf'(r)+ 3 f(r). Also if V-(f(r)7) =0 show that f(r) = r% where ¢ is an
arbitrary constant.
Solution : V- (f(1)7) = V(f(r) -7+ f(r)(V-7)

f’ir) 7 (Verify)

V(f(n) =



f'(r)

r

V- (f(r)7) = 77+ f()3 =rf'(r) + f(r)3
Also, given V- (f(r)#) =0
Thus, rf’'(r) + f(r)3 =10

rf’(r) = —f(r)3

Integrating both sides with respect to r

F& (3
f(r)dr——f;dr

log f(r) = —=3logr + logc = —logr3 + logc = logc — logr3 =logc/r3

c
Thus, log f(r) = log =
Thus, f(r) = % where c is an arbitrary constant.

Problem 24 : If “a’ is a constant vector and 7 = x7 + yJ + zk then show that V - {(d - )7} =
4(a-7).

Solution : Let @ = a,7 + a,] + ask
Given 7 = xT + yj + zk
a7 =a;x +a,y+asz
Now, V- {(a-»7} =V {(a;x + a,y + a32)7}
=V(ax +a,y+asz) 7+ (ax +a,y +azz)(V-F) e, (1)

dlax +a,y + asz dlax +a,y + asz
V(iax+a,y+azz) =1 (@, a;y 3 )+f (@ a;y 3 )+

S0(ayx + a,y + asz)
k
0z

= a1?+ a2_7+ a3E:C_l)
Also, V-7t =3

s =>V{@ DR =d-7+3@-7) = 4@



Problem 25 : Find the value of ‘a’ if 4 = (axy — z2)T+ (x2 + 2yz)j + (y% — axz)k is

irrotational.
Solution : Given, 4 is irrotational.
~VxA=0
2 VXA =y —2y)l— (—az + 22)] + (2x — ax)k (Verify)
VxA=0=> Qy —=2y)i—(—az+ 22)] + 2x — ax)k = 07 + 0/ + 0k
~2x—ax =0
sa=2.

Problem 26 : Show that the following vector point functions are irrotational.

(i) (4xy — z3)T + 2x%] — 3xz2k
(i)  Gx2+2y2+ 17+ (4xy —3y2z—3)]+ (2 —yDk

(iii)  (y2+2xz2 — 1T+ 2xyj + 2x%zk
Problem 27 : Show that the following vector (y?—z2 + 3yz — 2x)T+ (3xz + 2xy)j +

(Bxy — 2xz + Zz)E is both solenoidal and irrotational.
Problem 28 : If # = xT + yJ + zk for all f(r), showthatV x {f(r)#} =0.

Solution : We have, Vx (f(r)7) = V(f(r) X7+ f(r)(VXx 1)

() .
v(r) =L 7 (Verify)
T ] k
Vx7=|9 9 9|=0 (verify)
dox 0y 0z
X y z

0

Thus, V x (f(r)7) = 297 x 7 + £G)(0) = 0 +0

r
Problem 29 :: If 7 = xU+ yj + zk show that V x (r"#) = 0.

Solution : VX (r™7) = V(r™) X 7+ 1" (VX T) e (1)

Lo™) ,oG™)  -a(™)
ny —
V™) =1 % +J 3y +k P

= nr"1 ﬂ + 1 ﬁ + knrnt g
B J dy 0z



- x - _ y - _ Z
=mr" =+ nr* 1= 4 knrttl-
r r r

= nr"2(Tx +Jy + kz) = nr*27

PR

Vx7=|2 9 9|=0 (verif
dx 0y 0z ( y)
x y z

A1) =>VUx @) =VEM) X7+ 1M (VX F) = nr* 27 X 7 + 1™ (0) =0

Problem 30 : Show that V x # = 0

(Hint : Put # = -7)

Problem 31 : If = W x # where w is a constant vector and # = xT + yj + zk. Show that
1 - —

—curlv =w.

2

Solution : Let W = wyT + wyJ + wsk

- - v - o(Wx7 - — a(7
curlv=21x£=21x (w r)=ZlX(WX;—Tx))

=YTx (WX [Since,g—jzﬂ

= ) (G- Dw - @i = ) @D - ) (W)
= [@-DW+ G- Pwk- k)W = [ @ W+ G- W)+ (k- w)k]
=W+ W+ W) —(wyl+ wy] +wsk) = 30 — W = 2w
Thus, curlv = 2w
Hence, gcurlﬁ =w.

Problem 32 : If ‘a’ is a constant vector, show that

(i) Vx{(@a-Nr}y=axr

(i) v-{axr}=0
Solution :
(i) Letd = a,0+ a,j + ask
Vx{@ -Nry={v@@a-Nyxr+@-r)(vVxr)

a7 =ax+a,y+asz



J0(aix + ayy +azz) _d(ax + ayy +azz)
l +J +

Via-r)= 92 3y

—»a(alx + a,y + Cl3Z)
k
0z

= a1?+ a2f+ agk:a

Thus,

Vx{@ Nit=dxi+(@-MHN0=ax#
(i) ax7=0
Problem 33 : If A and B are irrotational, show that A x B is solenoidal.

Solution : Given, A and B are irrotational

Therefore,

To prove, A x B is solenoidal
i.e., to prove V- (/T X §):0

Now,V-(AxB) =(VxA)-B—(VxB)-A=0-0=0

Hence, AXB IS solenoidal.
. 1
Problem 34 : Show that V2(logr) = =
Solution : V2(logr) = 2= (logr) + 2= (logr) + 2= (logr) 1)
: ogr) = 5z (ogr) + 7= (logr) + 55 (logr) ...

Now, 55 togr) = 3¢ [ togn)] = [ 5] = 5[] = 5[]
=— 2:—42 + riz (verify)

.. . a2 92
Similarly find 37 (logr) & 02 (logr).

Then Sub. all the values in (1),

Problem 35 : Show that V2(r™) = n(n + 1)r"™ 2.

. a2 22 92
Solution : V2(r™) = e ™) + 37 r™) + =5 () I Q)



aa_xzz ™) = nx?(n—2)r"* + nr"2  (verify)

iy

. ., 2
Similarly find 7 ) & o0

S (D) => V™) =nx?(n—2)r"* +nr"? +ny?(n—-2)r"* +nr"? 4+

nz?n—=-2)r"*+nmr"? =nn+ 1r* 2.
Problem 36 : If @ is a harmonic function then show that V@ is solenoidal.
Solution : Given, @ is a harmonic function.
. We have,V?@¢ = 0
To prove, V@ is solenoidal
i.e., toprove, V-V@ =0
V-VQ =V20 =0
Hence, V@ is solenoidal.
Problem 37: Show that V - (@Vy — V@) = @VZ) — V2 0.
Solution : LHS=V - (VY — V@) =V - (@VY) — V- (YVP) ........... (1)
Consider, V- (@Vy)
Let A = Vi
Now, V- (@A) = V@ - A+ (V- 4A) = V- Vi + B(V - Vi) = V@ - Vip + B(VZ1))
Now, consider V - (1)VQ)
Let B = V¢
V-(YB) =V B+y(V-B) = Vip- V@ + (V- VB) = Vi - V@ + 1(V20)
(1)=>, V- (0Vy — YV@) = V@ - Vi + B(V2Y) — Vi - VO — (V2 0)
Thus, V- (@VY — YV@) = @V — YV2Q.
Problem 38 : Show that (V x V) x # = —2V
Solution : Let V = ViT + V,] + Vak & # = xT + y] + zk
First find VV x V and then find (V x V) x #

Problem 39 : Show that (V - V)V = V2 =V x (V x V).



UNIT — 11

EVALUATION OF DOUBLE AND TRIPLE INTEGRALS

Integration may be consider either as the inverse of differentiation or as the process of

summation.

In calculus of a single variable the definite integral

b

ff(x)dx

a
for f(x) = 0 is the area under the curve f(x) from x=a to x=b. For general f(x) the definite
integral is equal to the area above the x-axis minus the area below the x-axis.

The multiple integral is a definite integral of a function of more than one real variable,
for instance f(x,y) or f(x,y,z). Integrals of a function of two variables over a region in R? are
called double integrals and integrals of a function of three variables over a region in R3 are

called triple integrals.

The definite integral can be extended to functions of more than one variable. Consider

a function of 2 variables z=f(x,y). The definite integral is denoted by

| f £(x,y)dA

where R is the region of integration in the xy-plane.
2.1 Evaluation of the Double integral

Given a double integral we can integrate the integrand f(x,y) with respect to x treating

y as a constant and then integrating the resulting function with respect to y or vise versa.

Problems:

Problem 1: Evaluate fol foz xydxdy

. 1 (2 1 [x?]? 1
Solution : Let I = fy=0 Ji_oxydxdy = fy=0 [x?]o ydy = fy=0 E - 0] ydy

1 yzl 1
=2f ydy = 2 |—= =2[——0]=1
y=0 2 o 2



Problem 2 : Evaluate [ [’ (x? + y2)dxdy

Solution : Let [ = f;zo f:zo(xz + y?)dxdy

b

dy

0

X3
_ 2
=0l3 +y°x

a b3
=f —+y*b— Oldy
y=ol3

ab
= —(a? +b?)
3
Problem 3 : Evaluate fol foz(x + y)dxdy [Ans. : 3]

Problem 4 : Evaluate fol fol_yxdxdy

Solution :

_ 1-y 1 [x? 1=y _ (1 [a-y)?
LetI=[_, [ xdxdy = [)_, [7]0 dy = fyzo[ 20| dy
3 271
=172 [}_ [1+y% = 2y] y=%[y+y?—2y?]0=%[1+§—1—0]=—

Problem 5 : Evaluate f fxz x2ydxdy [Ans

1024a ]
35

Problem 6 : Evaluate J’ fxzzx(Zx + 3y)dydx [Ans. 1%]

Problem 7 : Evaluatef fa_x y3dydx [Ans.:lz—sas]

Problem 8 : Evaluate [[ xydxdy over the region bounded by the lines x=0; y=0; x+y=1.



Solution : x=0 is the y-axis, y=0 is the x-axis and x+y=1 is the line making intercepts with
the x and y axis.

R

oo,q) A@Q

Wehavex+y=1=>y=1-x

Keeping x as constant and y varies from 0 to 1-x.

x varies from 0 to 1.

1 1-x 1 [y?]r¥
Thus, ff xydxdy = [ _, fy=0 xydydx = [ x [7]() dx = [ x

0[2

1t 1t
=—fx(1+x2—2x)dx=§j (x + x3 —2x?)dx
0 0

x2 | x* x3]1_1[1 1 2 ]_1[6+3—8]_1 11
[ + 2 0o 2 +y 0] = 2z =27 T

Problem 9 : Evaluate [ xydxdy taken over the positive quadrant of the circle x? + y? =

Solution : (Q,a)

0,0) a,0)

Here x varies from 0 to a

y varies from 0 to va? — x2.

Nryampe
[ xydxdy = fxa=o fyfo * xydydx



By M g

_f _az—xzd_lfa X g
=|x > x=5 (a*x — x*)dx
o - 0

Problem 10 : Evaluate [f(x? + y2)dxdy over the region for which x,y are each greater
than or equal to 0 and x + y < 1. (Ans. 1/6)

Problem 11 : Find the value of [[ xy dxdy taken over the positive quadrant of the ellipse

2 2

X ye
PERCRR
Solution :

oL x2 oyl , 2
Solutlon.;+§:1:>y:b 1_;
x varies from 0 to a & y varies from 0 to b /1 — Z—i

2
b 1—x zbz

a a2 _a .
Thus, ff xy dxdy = [ __, fy:o xydydx=——(verify).
2.2 Changing the order of integration

For a given integral in a region, change of order changes the limits of x and y.

Problem 12 : Change the order of integration in the integral foa féa_x xydxdy and evaluate

it.

2
Solution : In the given integral y varies from % to 2a-x and x varies from 0O to a.



So, we have y:%z =>x?’=ay &
y=2a-Xx=> x+y=2a
Q(0,2a

D2 P(a,a)

0(0,0) (2a,0)

Here the region of integration is OPQ.

In changing the order of integration, we integrate first with respect to x keeping y as

constant.

Here the region is divided into 2 parts D1 and D2.

Therefore, foa féa_x xydxdy = [f, xydxdy + [[  xydxdy................. (1)

Consider the region D1.

y varies from 0 to a and x varies from 0 to ,/ay.

Vay a*
ff xydxdy = f f xydxdy = 5 (verify)
D1

x=0
y=0

Consider D2.

y varies from a to 2a and x varies from 0 to 2a-y

20 0y c
ff xydxdy = f f xy dxdy = — a*.
D2 x=0 24

y=a

Thus (1)=> [ [& " xydxdy = % riat=2gt



Problem 13 : By changing the order of integration evaluate fxoio f;o:x?dxdy.

Solution :
Here x varies from 0 to oo and y varies from X to oo.
The regions are x=0; x=00 ; y=X; y=00.

falY \
U 7

After changing the order of integration y varies for 0 to co and x varies from 0 to y.

o' ooe_y o Y -y
f j—dxdy = J J—dxdy
x=0y=x N y=0x=0

— Q oo__ - _ ,071 —
= [_1 .- [e e’l=1
Problem 14 : Changing the order of integration evaluate foa f;xziyz dxdy.

Solution : Here x varies from y to a and y varies from 0 to a.

The regions are x=y, x=a, y=0, y=a.

X




By changing the order of integration, x varies from O to a & y varies from 0 to x.

a a a x
X
0y =0y=0

X

= j(tan‘l(l) — tan1(0))dx

- [

2.3 Double integral in polar co-ordinates

-l>|=l
~l>|=1

The double integral in Cartesian form [f. f(x,y)dxdy transforms into

ffR f(rcosH,rsind)rdrdo.

Problem 15: Evaluate [ Va2 — r2drd6 over the upper half of the circle r = acos#.

Solution :

Here r varies from 0 to acos6 and| 6 varies from 0 to /2.

/2 acos@
ffr a? —r2drdf = f f ria? —r2drd0
R 6=0 r=0

=[Z, facosg\/a2 —7r? (—M) do [Since, d(a* —r?) = —2rdr =>

r=0 2

d(a?-r?)
2

oordr = —



= f; Ofacgse(az . 1’2)1/2 (_M) 40
—0 Jr=

2

0

0

3 do

7 , .
f [a? — (aCOSQ)Z]f —[a%? = 0]z
=0

2

z
f([az - azcosze]% - [az]%)dg
=0

6=0

[ 2 ™ ]
| fa3sin30 do — fa:a do] |
B |

=5[] -]

3m—4 3 .
18 a’ (verify)




Problem 16 : By transforming into polar co-ordinates evaluate ff

annular region between the circle x? + y? = a? and x2 + y2 = b? (b>a).
Solution : Put x = rcos8;y = rsinf and dxdy = rdrd0
r varies froma to b and 8 varies from 0 to 2.

2w b
ﬂ x2y? dxdy — f f r?cos?0r?sin?0 drdo
X2+ y2 Y= r2c0s26 + r2sin26 |

60=0 r=a

f f rScos?0sin?0 drdo
r2(cos?6 + sin?6)

60=0 r=a

2t b
j r3c0s?0sin?0drdo

6=0 r=a

2 o
r
= -]-[Zl cos?*0sin%0deo
6=0 a

2
1
=1 f [b* — a*]cos?0sin?6do

2T
b4 _ a4
= % f cos?0(1 — cos?6)do
6=0
[b4 _ a4] 2T
i — f (cos?6—cos*0)do
6=0
[b4 _ a4] 2T 2T
= f cos?0d6 — f cos*0do
6=0 6=0
/2 /2
— a
= c0s%0do — 4 f cos*0do
6=0
/2

cos?6do — f cos*0do

6=0

II\:!

dxdy over the



22 422

— [b* — ] [4771—6377 ]
= 16 - a*l[55 |

J-\/Zax—x2

Problem 17 : By changing into polar co-ordinates evaluate the integral foza 0 (x% +

y?)dxdy.
Solution : Here x=0, x=2a, y=0, y= V2ax — x2 => y? = 2ax — x?
i.e.,x?+y?%=2ax
Put x = rcosf;y = rsinf and dxdy = rdrd6
r2c0s%0 + r?sin?0 = 2arcosf
i.e.,r® = 2arcosd =>r = 2acosf

r varies from 0 to 2acosf & 0 varies from 0 to /2.

va V2ax—x2 /2 2acos6
f f (x? +y?¥)dxdy = f f (r?cos?0 + r?sin?0) rdrdf
0 0 =0 r=0
/2 2acos0 /2 2acos6
= f f r? rdrdf = f J. r3 drdo
6=0 r=0 6=0 r=0
/2 2acos6 /2 4 2ac0s0
= f f r3 drdf = f Izl do
=0 r=0 6=0 0
/2
(2acosf)* — 0
iy ’
4
0=0
/2 /2

16a*cos*6
= f — do =4a4f cos*0 do
6=0

_4431n_3na4
T2 g




2.4 Triple Integrals

The triple integral is defined in a manner similar to that of the double integral, if f(x,y,z)
is continuous and single valued function of x, y and z over the region of space R enclosed by
the surface, then

fffv fl,y,2)dvV = [[[ f(x,y,z)dxdydz.
Notes : (1) [f, dxdy represents the area of the region R.

(2) JJJ, dxdydz represents the volume of the region D.

Problem 18 : Evaluate foz ff flz xy? zdzdydx

.2 30 2 2 2 3 2 [721?
Solution : [°_ fy:lfzzlxy zdzdydx = [ _, fyzlxy [7]1 dydx

Problem 19: Evaluate I = fologa fox f()x”e“y”dxdydz.

Solution : I = [9°

=0 f;czo fzx:oyex+y+zdzdydx — floga fox[ex+y+z]g+ydydx

0

loga

— f f[ex+y+x+y — ex+y+0]dydx

0 0



loga x

— f f[ez(x+y) _ ex+y]dydx

0 0

loga x

eZ(x+y)
:f I > —e(x+y)l dx

0 0

loga
62(x+x) ( ) eZ(x+0) (x+0)
— — et _ — plx+ dx
[ {15
0

[e4x 02X loga
=|——-3—+¢*
8 4
10
e4loga eZloga eO eO
=l 3 -3 4 +elogal §—3z+eol
eloga”‘ 3eloga oga ; 1 .
s 0T e [__ i ]
_a 3a2+ [1—6+8]
—g 4 ¢ 8

Problem 20 : Evaluate [[[ xyzdxdydz taken through the positive octant of the sphere x? +

y% +z%2 =a?.

a’?=>x=+a

Solution : Put y=z=0 .. x?
Putz=0~ x2+y2=a?=>y%2=0a%2—-x2=>y=+Va2 —x2

x2+y2+z2=a%*=>z=+/a%?—x2%—y?



a VaZ—x? a?-x2-y?
f f f xyzdxdydz = f xyzdzdydx

=
Il
=}
<
Il
=}
N
Il
=}

f— a 7
=g (verify)

Problem 21 : Evaluate [Jf —22%2_ taken over the volume bounded by the planes x=0;
(x+y+z+1)
y=0; z=0; x+y+z=1.

Solution : Here x varies from0to 1

y varies from 0 to 1-x and z varies from 0 to 1-x-y.

1 1-x1-x-y

ﬂf (x +d;iyji E f f f (x+y+z+1)dzdydx

x=0y=0 z=0

1 1-x —y—
B .]' [(x+y+z+1)‘3+1]1 Yy

—3+1 dydx

0 0

x=0y

1-x
[(x+y+z+ 1)‘2](1)_x_ydydx

y=0

|
N| =

c”;\r—l

X

1 1-x
1
=—§f [(x+y+1—-x—y+ 12— (x+y+0+1)?]dydx

x=0y=0

1-x

f [(2)2—=(x+y+1)?] dydx

x=0y=0

N| =

1 1-x

1
1 f 1 (x+y+1)-2* 4
72 ) |4 x

-2+1

x=0



1 -x
1 f 1 (x+y+1)71 p
=72 ) |a7” i

0 0

1

_ ! H_y+(x+y+1)—1] T

[y

=—% j{E(l—x)+(x+1—x+1)‘1]—[0+(x+0+1)‘1]}dx
x=0

_ %fl[4(1—x)+(2)‘1]—[(x+1)‘1]}dx
=0

_ _% f {Eu X+ (2)-1] e+ 1)-1]}dx
x=0

~ 1“1 1 1 1 }d
R B Vi S e
xX=

b

_ 113 1 x? 1 41
B A TR
1(3 11 0
=3 {-33-10s+ D] - [~ 55100+ 0]
1(q3 1
= {135~ 82| - =100}
- 1{6_ log2 0}
=3l e+
= E —1 2] log2 >
=287 %916



UNIT 111
VECTOR INTEGRATION - LINE, SURFACE AND VOLUME INTEGRALS

3.1 LINE INTEGRALS

Another way of generalising the Riemann integral fabf(x)dx is by placing the
interval [a, b] by a curve in R3. In this generalization the integrand is a vector valued

function f = fil + fo] + fak.
Definition:

Let C be a curve in R3 described by a continuous vector valued function r = r(t) =

x(O)T+y(£)] + z()k where a < t < b.

Let £ =f,(x,v,2)i+ f,(x,y,2)] + fs(x,y,2)k be a continuous function defined in
some region which contains the curve C. The line integral of f over C denoted by fc fdr

is defined by

b

[ £-dr = [0, 70,201 ® + 10, 50,20l ©

c a

+ f3[x(t), y(t), z(t)]z' (t)]dt.
Solved Problems

Problem 1: Evaluate fcf -dr where f = (x? + y?)I+ (x?2 — y?)J and C is the curve
y = x2 joining (0,0) and (1,1).

Solution : The parametric equation of the curve can be takenas x = t,y =t2,0<t <
1.

1

1
ff dr = f[(t2 +tH1 + (t? —tH)2t]dt = f[t2 + t* 4+ 2t3 — 2t°]dt
0

(o 0

[, 2 2t61_1+1 1 1 245 7
RE 5 4 6] 3 52 3 10 10
Problem 2: If f = x2i — xyj and C is the straight line joining the points (0,0) and (1,1)

find [, f - dr.

Solution : The equation of the given line is y=x and its parametric equation can be taken

asx =t y=twhere0<t<1.



.-.ff-dr:f(tz—tz)dtzo.

(o

Problem 3: Evaluate |, f-drwhere f = (x*>+y*)i—2xyj and the curve C is the

rectangle in the x-y plane bounded by y =0,y = b,x = 0,x = a.

Solution : Let 0=(0,0), A=(a,0), B=(a,b) and C = (0,b) be the vertices of the given

rectangle.
:.lf-dr= ff-dr+ ff-dr+ff-dr+ ff-dr

OA AB BC co

Now the parametric equation of OA can be takenas x = t,y = 0 where 0 <t < a.

a

a3
jf-drzjtzdtzg.
0OA

0

Now the parametric equation of AB can be takenas x = a,y = t where 0 < t < b.

b
ff -dr = J-—Zatdt = —ab?.
AB 0

Now the parametric equation of BC can be takenas x =t,y = bwhere 0 <t < a.

@ 3
ff-drzf(t2+b2)dt=—<%+ab2>.
BC 0

Now the parametric equation of CO can be takenas x = 0,y = t where 0 <t < b.

b

ff-drz—detzO.
co 0

ad al
ff cdr = ?—ab2 — <?+ ab2> + 0 = —2ab?.
C

Problem 4: If f = (2y + 3)i + xzj + (yz — x)k evaluate fcf - dr along the following

paths C. (i) x =2t%y=t;z=1t3 fromt=0tot = 1.

(i) The polygonal path P consisting of the three line segments AB, BC and CD where
A=(0,0,0), B=(0,0,1), C=(0,1,1) and D=(2,1,1).

(i) The straight line joining (0,0,0) and (2,1,1).

Solution : (i) [, f - dr = [, [(2t + 3)4t + 2t5 + (¢* — 2t2)3t?] dt



—[8t3+6t2+1t6+3t7 6t51—8+6+1+3 6_z88
3 3 7 5 1, 3 37 5 85°

(i) [ frdr=[ f-dr+ [, frdr+ [, f-dr

1

jf-dr=]Odt=O[Since,x=0,y=0,z=tand0§t£1alongAB]
AB 0

1

jf-dr=]Odt=0[since,x=0,y=t,z=1and0§t£1alongBC]
BC 0

2
jf-dr=f5dt=0[since,x=1,y=1,z=tand0£t£2alongCD]
cD 0

= [5t]3 = 10.
Thus [, f - dr = 10.

(iii) The parametric equation of the line joining the points (0,0,0) and (2,1,1) can be taken

asx =2t,y=t,z=twhere0 <t <1.

Thus, [.fdr= [J2t+3)2+t2+ (t> —20)dt = [, (3t + 2t + 6)dt =

[t +t* + 6t]; = 8.
Exercises

1. Evaluate f((f’lz))f -dr where f = (x + y)i + (y — x)j along (i) the parabola y? = x

(i)the straight line joining (1,1) and (4,2).

2. If f = (x? —y?)i+ 2xyj, evaluate fcf - dr along the curve C in the x-y plane given
by y = x2 — x from the point (1,0) to (2,2).
3. Evaluate fcf -dr where f = (x —y)i + (y — 2x)j and C is the closed curve in the x-

y plane x = 2cost,y = 3sint fromt =0tot = 2m.
3.2 SURFACE INTEGRAL

Definition : Consider a surface S. Let n denote the unit outward normal to the surface S.

Let R be the projection of the surface S on the x-y plane. Let f be a vector valued function

defined in some region containing the surface S.

Then the surface integral of f over S is defined to be

fff-ndSzf |£:Z|dxxy'

S R



Note : We can also define surface integral by considering the projection of the surface on

the y-z plane or z-x plane.

Problem 1 : Evaluate [f, f - n dS where f = (x + y?)i — 2xj + 2yz k and S is the surface

of the plance 2x + y + 2z = 6 in the first octant.

Solution : Let @(x,y,z) =2x+y+2z—6

VO 2i+j+2k

The unit surface normal n = =
Vo] 3

“fn %[Z(X + y?2) — 2x + 4yz]

%[Z(X +y2) —2x + 2y(6 — 2x — y)]

=§[3y—xy].
L
. |n_kl_2(3y—xy).

The projection of the surface on the x-y plane is the region R bounded by the axes and the

straight line 2x+y=6 as shown in the figure.

fff-nd5=ff2(3y—xy)dxdy
s R

3 6—2x

fo By — xy)dydx—Zf[Zy ——xy]

0

=2 f E (6 —2x)% — %x(6 - 2x)2] dx

3

[——(6 2x)3 —18x2% — x +8x]

0

= 81.

Problem 2 : Evaluate [[.(V x f) - n dSwhere f = y?i + yj — xzk and S is the upper half of

the sphere x? + y% 4+ z% = a? and z > 0.

Solution : Let @(x,y,z) = x? + y2 + z2 — a?.

. . . \Y 2xi+2yj+2zk
The unit surface normal n is given by n = o = ZXt2yi+2zk
Vo] 2 /x2+y2+z2

= 2(xi+yj+zk)



Also VX f = zj — 2yk.
(Vxf)-n= (2) (yz —2yz) = - (%)yZ-

Also,n-k = G) Z.

_V><f_
AN |nk|_ y.

The projection of the surface on the x-y plane is the circle x? +y2 =a% Let R

denote the interior of the circle.

ff(fo)-ndS=—ffydx dy
s y

Put x = rcos and y = rsinf. Hence,|J| =r.

21T a

H(fo) ‘ndS=-— jjrsm@rdrd@-—j—a sin6d@ = 0.

Problem 3 : Evaluate [[ f-ndS where f = (x®—yz)i—2x%yj+2k and S is the

surface of the cube bounded by x =0,y =0,z=0,x =a,y = aand z = a.

Solution:

o

Y

On the face 0ABC,n = —i and x = 0.

fff.ndSszyzdydz—f [Y;l

0ABC
a?[z2]1*  a*
=7H =7

0

a

a
a?
le7—Oldz
0

0



On the face DEFG,n =i and x = a.

fff nds = ff(a —yz)dydz_”a __l

DEFG

On the face 0GDC,n = —jand y = 0.

[ ronas= [ founas=o

oGDC

On the face AFEB,n =jand y = a.

a

a a
ﬂ f-ndS= jj—sza dxdz=j—2x2a2dz
00

AFEB

On the face OAFG,n = —k and z = 0.

[ ronas=-[ foauty=-z0:

OAFG

On the face CBED,n = k and z = a.

[ ronas=[ [ty

CBED
a* 1 2 a®
. ) _ 5___ 4 _f 5 _9.2 2
--ffndS 4+a e +0 34 2a° + 2a 3
Problem 4: Evaluate [f.(x* +y*)dS where S is the Surface of the cone z* = 3(x* + y?)

bounded by z = 0 and z = 3.



UNIT IV
GREEN’S, STOKE’S AND DIVERGENCE THEOREM

4.1 Green’s theorem in plane
If C is a simple closed curve in the xy plane bounding an area R and

M(x,y) and N(x,y) are continuous functions of x and y having continuous derivatives in R,

then
ON 6M
7§de+Ndy f ——— dxdy

Problem 1 : Verify Green’s theorem in plane for the integral [ .(xy +y*)dx + x*dy, where

C is the curve enclosing the region R bounded by the parabola y = x?2 and the line y = x.
Solution : Giveny = x? and y = x.

Therefore, x = x> =>x>—-x=0=>x(x—-1)=0=>x=00rx=1

When x=0, y=0 & when x=1, y=1

Thus the parabola and the line intersect at (0,0) and (1,1).

Y
B(1, /

X
= ~
/

6(90)

In the figure OABDO, the curve C consists of the parabolic arc OAB and the line segment
BDO.

The parametric equations of OAB are x = t, y = t2 where t varies from 0 to 1.
Here, M = xy + y2 & N = x?
aM=txt?+tt=t3+t*&N =1t

dx = dt & dy = 2tdt



1 1
f(xy + y?3)dx + x*dy = f (3 + tHdt + t?2tdt = f (t3+t*+ 2t3)dt
Cc 0 0

The parametric equations of BDO are x = t,y = t where t varies from 1 to 0.
CM=t*+t*=2t*&N =t?

dx =dt&dy =dt

0 0
j(xy + y3)dx + x*dy = f (2t?)dt + t2dt = j (2t* 4+ tH)dt
(o 1 1

= [TL =1
Hence,
f (xy + y¥)dx + x%dy = (xy + y¥)dx + x%dy + j (xy + y?)dx + x%dy
Cc OAB BDO
19 1
20 Tog e, (1)
oN = & J =x+2
ox XSy TFTY

x varies from 0 to 1 and y varies from x? to x.

0N aM Lox
f ——— dxdy f f (2x — x — 2y)dydx
0 Jx2

1 ,x 1 yz X
f (x — 2y)dydx = f <xy -2 —> dx
x2 0 2 x2?

1

= f [Cex — x%) — (x® —x*)]dx = f (x* — x%)dx

0

_(x5 x) 1 1 4-5 1 ?)
=\ 5 ), T T T e T g e

From (1) and (2)

ngd +Nd ff (aN aM)d d
x = ———)dx
C Y g \0x 0Jy Y

Hence, Green’s theorem is verified.



Problem 2 : Verify Green’s theorem in plane for the integral [ szdx + ydy, where C is the

curve enclosing the region R bounded by the parabola y? = x and the line y = x.

(Hint : Common point (0,0) , (1,1). For the line segment x=t, y=t & t varies from 0 to 1. For

the parabolic arc x = t? & y = t, where t varies from 1 to 0. Ans. -1/28).

Problem 3 : Verify Green’s theorem in plane for the integral | c x2dx + xydy, where C is the

curve enclosing the region R bounded by the parabola y? = 8x and the line y = 2x.

(Hint : Common point (0,0) , (2,4). For the line segment x=t, y=2t & t varies from 0 to 2.
For the parabolic arc x = 2t%? & y = 4t, where t varies from 1 to 0. Ans. 8/3)

Problem 4 : Verify Green’s theorem for [.(3x? — 8y?)dx + (4y — 6xy)dy, where C is the

boundary of the region R enclosed by y = x? & y? = «x.
Solution: Given parabolas are y = x? & y? = x.
axt=x=>x*-x=0=>x(x3-1)=0=>x=00rx = 1.
When x=0, y=0.

When x=1, y=1.

Let the parabolas intersect at (0,0) and (1,1).

AN
Y

Now, the curve C composed of the arc I' of the parabola y = x?  and the arc I’ of the

parabola y? = x.

The parametric equation of I'is x = t,y = t? , where t varies from 0 to 1.
[. =[] (3t% — 8t)dt + (4> — 6t3) (2tdt) = —1 (verify)
The parametric equation of I'’ is x = t? & y = t , where t varies from 1 to 0.

Jor = f10(31:4 — 8t%)(2tdt) + (4t — 6t3)(dt) = g (verify)



Thus [, (3x% — 8y?)dx + (4y — 6xy)dy = =1+ 2= e (1)

ff(aN aM)dd —flfﬁlodd = 2 (Uerify) . (2
\ox "y xy—o i yyx—zverlfy e (2)

X

From (1) & (2) Green’s theorem is verified.

Problem 4 Verify Green’s theorem for [.(3x* — 8y?)dx + (4y — 6xy)dy, where C is
the boundary of the region R enclosed by x=0, y=0, x+y=1.

Solution : B(0,1)

046, ;

J.3x* — 8y*)dx + (4y — 6xy)dy = [,,(3x* — 8y?*)dx + (4y — 6xy)dy +
J,5(3x* = 8y?)dx + (4y — 6xy)dy + [, (3x* — 8y?)dx + (4y — 6xy)dy

Along OA : x=t, y=0, t varies from 0 to 1.
1 .
Jo (3x* = 8y?)dx + (4y — 6xy)dy = [, 3t?dt = 1 (verify)

Along AB :

x
=}

= =t=>T=t=>x-l=—t=>x=1-t&¥=t=>y=t
-1 1- -1 1

[
<

o
o

x=1-—t,y=t,tvaries from0to 1.
[, (3x* = 8y?)dx + (4y — 6xy)dy = fol(—3 + 4t + 11t?)dt = 8/3 (verify)
AlongBO:x =0,y =1 —t, tvaries from 0 to 1.
J5o (3x% = 8y*)dx + (4y — 6xy)dy = fol 4(t — 1)dt = —2 (verify)
Thus, [.(3x* —8y?)dx + (4y — 6xy)dy = 1+ g —-2= g(verify) . (1)
Find 5+ & 7~
Then, [f, (Z—: — ‘Z—I\;) dxdy = fol fol_x(—6y + 16y)dydx = g(verify).... 2)

From (1) & (2),



Problem 5 : Verify Green’s theorem for fc(x — 2y)dx + xdy, where C is the circle x? +

y?=1.

Solution : cost, sint)

The parametric equations of the circle are x=cost, y=sint, t varies from 0 to 2.

dx = —sint dt & dy = cost dt

2

f (x — 2y)dx + xdy = (cost — 2sint)(—sintdt) + costcostdt
c 0

21
= f (—costsint + 2sin?t + cos?t)dy
0

2n o sin2t _ .
= f (— >+ 2sin’t + c052t> dy = 3m (verifty)
0

Problem 6 : Evaluate [.(3x + 4y)dx + (2x — 3y)dy, where C is the circle x> + y* = 4

Problem 7 : Show that [.(3x? — 8y®)dx + (4y — 6xy)dy = g where C is the boundary

of the rectangular area enclosed by the lines y=0, x+y=1, x=0.

Problem 8 : Show that [.(3x?—8y?)dx + (4y — 6xy)dy = 20, where C is the

boundary of the rectangular area enclosed by the lines x=0, x=1, y=0, y=2.
Problem 9 : Evaluate [ xy?dy — x?ydx, where C is the cardioids r = a(1 + cosb).
[Hint:

[Lxy?dx — x?ydy = [[,(x® + y»)dxdy = " [TV 12 (rdr)dg = Enat]



4.2 STOKE’S THEOREM

Theorem : If S is an open two sided surface bounded by a simple closed curve C and fis a

vector valued function having continuous first order partial derivatives then

Cff-dr=g(v><f)-nd5

where C is traversed in the anticlockwise direction.

Problem 10: Verify Stokes theorem for the vector function f = y?i + yj — xzk and S is the

upper half of the sphere x2 + y2 4+ z2 = a? and z > 0.

Solution : By problem 2 0f3.2 [[.(VX f) -ndS =0

Now the boundary C of the hemisphere is given by the equation x = a cosf,y = a sinf,z =
0,0 <6 <2m.

21

ff dr = fyz dx + ydy — xzdz = J- [a?sin?6(—asinB) + asind(acosH)]do
c 0

2T 2T
= —a3f sin36do + aZJ- sin@ cos0dO = 0
0 0

Thus, [ f-dr = [[.(VX f)-ndS.

Hence Stoke’s theorem is verified.
Problem 11 : By using Stoke’s theorem prove that fCr ~dr = 0 wherer = xi + yj + zk.
Solution : Vx r = 0.

By Stoke’s theorem we have, [.r - dr = [[.(V X ) - n dS=0.

Problem 12 : Evaluate by using Stoke’s theorem | c(vzdx + zxdy + xydz) where C is the

curve x2 +y2 =1,z =y?2

Solution : We note that yzdx + zxdy + xydz = (yzi + zxj + xyk)- (idx + jdy + kdz)
= f-dr where f = yzi + zxj + xyk and dr = idx + jdy + kdz

Now, [.(yzdx + zxdy +xydz) = [.f +dr =0 = [[(VX f) -ndS

Butvxf=0



f (yzdx + zxdy + xydz) = 0.
c

Problem 13 : Evaluate fc e*dx + 2ydy — dz by using Stoke’s theorem where C is the curve
x?+yi=4,z=2.

Solution : e*dx + 2ydy — dz = (e*i + 2yj — k) - (idx + jdy + kdz)where
f = (e*i+ 2yj — k) and dr = (idx + jdy + kdz)

Joe¥dx+2ydy—dz= [ f-dr=0= [[(VXf)-ndS where S is any surface whose
boundary is given by x? + y2 = 4,z = 2.

i j k
Now, VX f =|d/dx d/dy 0/0z| =0
e* 2y -1

jf(fo)-ndS=0.
s
.'.fexdx+2ydy—dz= 0.
c

4.3 Gauss Divergence theorem

If V is the volume bounded by a closed surface S and f is a vector valued function having

continuous partial derivatives then [[ f - ndS = [ff, V- fav.

Problem 14 : Verify Gauss divergence theorem for the vector function f = (x3 — yz)i —

2x2yj + 2k over the cube bounded by x =0,y = 0,z=0,x = a,y = aand z = a.

Solution : By problem 3 of 3.2 we proved that [f. f -n dS = %5
Now, V- f = 3x2 — 2x?% = x?2.

a

a a a a a
1 1 a®
fffv-fdV=fffxzdxdydz=§ffa3dyd2=§fa4dz=?.
174 00 O 00 0
fff-ndSszfV-fdxdydz.
s v

Hence Gauss divergence theorem is verified.



Problem 15 : Verify Gauss divergence theorem for f = yi + xj + z%k for the cylindrical
region S given by x2 + y?> = a%;z = 0 and z = h.

Solution : V- f = 2z
21

wv.fdhfl

2zr dr d6 dz (changing into cylindrical coordinates)

O\:

h 2w h
= j a’zdfdz = f 2a’mz dz = ma?h?.
00 0

The surface S of the cylinder consists of a base S;, the top S, and the curved portion S;.

OnS;,z=0,n=—k. Hence f -n = 0.

iff-nd5=0.

OnS,,z=hn=k. Hence f - n = h?,

f-ndS = ff h%dxdy where D is the region bounded by the circle
Sz

= h?a?.

Vo 2xi+2yj xi+yj
On S;,n=— where® = x? +y? —a? = 2 -2

T |vel o 2./x%+y2 T a
n L] j —_— X
] a
'‘n
! 2x.

n-jl

b
!Jf-ndSz!JZxdydz=a2!

ffsf-ndSzffslf-ndS+ffszf-nd5+ff53f-nd5=0+nh2a2+0=nh2a2.

2cos6do dz =0.

OSSJ

I,V f dV = [[.f -ndS = mh*a?.

Hence Gauss divergence theorem is verified.



Problem 16 : Prove that for a closed surface

J[;r-ndS = 3V, where V is the volume enclosed by S.

Solution : By Gauss’ divergence theorem we have,

[[rnas=[[rra

=3 ﬂ dV = 3V whereV is the volume enclosed by S.
4

Sa

Problem 17 : Show that [[. f - ndS = [ff, a* dV wherer = @a and a = V@and V*@ =

0.



UNIT V
FOURIER SERIES

5.0 Introduction. Fourier series named after the French Mathematician cum Physicist Jean
Baptiste Joseph Fourier (1768-1803), has several interesting applications in engineering
problems. He introduced Fourier series in 1822 while he was investigating the problem of
heat conduction. This series became a very important tool in mathematics. In this chapter we
discuss the basic concepts relating to Fourier series development of several functions.

5.1 Periodic Functions. A function f: R — R is said to be periodic if there exists a positive
numberwsuch thatf (x + w) = f(x)for all real numbers x and w is called a period off. If a

periodic function has asmallest positive period w, then wis called the primitive period off.

Example 1. The trigonometric functionssin x and cos x are periodicfunctions with primitive

period 27 [since sin (x + 2m) = sinx andcos (x + 2m) = cosx].
Example 2.sin 2x and cos 2x are periodic functions with primitive periodmeach.

Example 3. The constant functionf (x) = c is a periodic function.In fact,every positive real

number is a period off and hence this periodic functionhas no primitive period.
Example 4. Let f: R — R be a function defined by

0 if xisrational
f) = {1 if x is irrational

Let wbe any rational number. If x is rational then x + w is also rational andifx is irrational

thenx + w is also irrational. Hence,

0 if xisrational
flx+w) = {1 if x is irrational

=f(x)
Hence every rational number is a period of fandf has no primitive period.

Remark. Letfbe a periodic function with periodw. If the values off (x)are known in an
interval of lengthw, then by periodicity f(x) can bedetermined for all x.Hence the graph of a

periodic function is obtained byperiodic function of its graph in any interval of length w.

Example 1. The graph of the periodic functionf (x) = sin x is given below in



2= - 32 0 “\_/Zn

Figure 1
Example 2. Let f be the periodic function defined by

-lif-m<x<0

f(x)={ Lif 0oy < andfG+2m) = FGO.

The graph of the periodic function sin x is given below in figure 2.

4
&

Figure 2
Example 3. Let f be a periodic function defined by

xif —m<x<m

£ =7+ 2m = ey
(ie) fx) =xif -t <x <mand f(x + 2m) = f(x)

The graph of the periodic function sin x is given below in figure 3.



v

Figure 3
Solved Problems.

Problem 1. Letfand g be periodic functions with period weach and let aand b be real

numbers.Prove that af + bg is also a periodic function withperiodw.

Solution.Sincefand g are periodic functions with periodw each we have for all x,

fx+@) =f(x).unin...(1) and
gx+@) =gx) e v e (2)

Now, (af + bg )(x +w) = af (x + @) + bg(x + @)
= af (x) + bg(x) (by (1)and (2))
= (af +bg)(x)

Hence af + bg is a periodic function with period .

Problem 2. Ifw is a period of f'prove that nw is also a period of fwherenis any positive

integer.

Solution. Letn be any positive integer. Sincew is a period off we havef(x) = f(x + w).

Using this fact repeatedly we have
fO=fxt+tw) =fx+2w) = =fx+ - Dw) =f(x+nw)
It follows that n wis a period off.

Problem 3. Letn be any positive integer. Prove that sin nx is a periodicfunction with period

21

n



Solution. Since sin x is a periodic function with period 27 we have sin(x + 2m) = sin x for

all x.

Now, let g(x) = sinx
Then g (x + 27”) = sin [n (x + 27”)] = sin(nx + 2m) = sinnx = g(x)
Hence sin nx is a periodic function with period 27”

Problem 4. Let f(x) be a periodic function with period w. Prove that forany positive real

numbera, f (ax)is aperiodic function with period%.

Solution. Sincef (x)is a periodicfunction with period 2 we havef(x + w) = f(x)for allx.
Letg(x) = f(ax).

Now, g (x +§) =f [a (x +§)] = f(ax + @) = f(ax) = g(x).
Hence g(x) is a periodic function with period%.

Exercises.

1. Find the primitive period of the following functions

2T X

(a)sin 2x(b)cos 2x(c)cos nx(d)sin mx (e) cos 2w x (f)cos [(T)]
Answers. 1. (a) T (b) r (c) 27” (2 (e)1 Nk

5.2 FOURIER SERIES - FULL RANGE

Since periodic functions which occur frequently in engineering problems are
rathercomplicated, representation of periodic functions interms of a simple periodic function
is a matter of great practical importance.We nowdiscuss the problem of representing various
functions of period2xz.(Full range) in terms of the simple functions namely constant
functionc and some trigonometric functions

sin x, cosx,sin 2x, cos 2x, ..., Sin nx, cos nxetc.
Definition. Trigonometric Series. A series of the form

ay + a, cosx + b; sinx + a, cos 2x + b, sin 2x + --- + a,, cosnx + b, sinnx + -+

=a,+ Z(an cos nx + b, sinnx)

n=1

Wherea,, and b, are real constants is called a trigonometric seriesa,, and b,, are called the

coefficients of the series (Fourier coefficients). Since each term of the trigonometric series is



a function of period 2 it follows that if the series converges then the sum is also a function

of period 2.

We now state the following theorem and its results without proof and it becomes the

definition of Fourier series
a, cos x + by sinx + a, cos 2x + b, sin 2x + --- + a, cos nx + b,, sin nx

Theorem 1. Let f(x) be a periodic function with period 2m. Suppose f(x) can be

represented as a trigonometric series.

fx) = % + Z(an cosnx + by, SINNX) we cee vee ver vee e eee .. (1)
n=1

Then we have

T
1
=1 [ re0 as
-7
T
_1 d
a, = - ff(x) cosnx ax n=123,..
-7
A
- 1 . d
n - E ff(x) Sln nx x n = 112131 .-
-7

Remark 1. The formulae for the coefficientsa,, a,, b,,, given in the above theorem are

known as Fourier coefficients.
Euler's Formulae.

Definition - Fourier series

The series f(x) = % + Yo, (a, cosnx + b, sinnx)when a,, a,, b,, are given by the

Euler’s formulaeis calledthe Fourier series off (x).Also, thecoefficients a,, a,,, b,, are called

Fourier coefficients.

Remark 2. We use% instead of a,, in the Fourier series just to obtain uniformity in Euler’s

formulae.

Remark 3.1ff(x) is a periodic function with period 2t we can obtain the Fourier series of
f(x)in any interval of length 2m. If the interval is taken as (c,c + 2m)then the Euler’s

Formulae for Fourier coefficients are given by



1c+27t
— d
ay - f f(x) x
0
c+21
1
W=7 f f (%) cosnx dx n=123..
c
c+2m
— 1 i
b, = ~ j f(x)sinnx dx n=123..
c

The calculation of theFourier coefficients of a function can be simplified for certain

functions.
Definition. Areal function f(x) is called an even function iff (—x) = f(x)for all x.
The functionf (x) is called an odd function iff (—x) = —f(x).

For example, (i) cosnx is an even function, (ii) sinnx is an odd function.(iii) x™ is an odd

function ifn is an odd integer and an even function ifnan even integer.

Remark 1. Iff (x) is an even function f_aaf(x) dx =2 foaf(x) dx
Iff (x) is an odd function f_aaf(x) dx =0

Remark 2.

() The product of two even functions is an even function.
(i) The product of two odd functions is an even function.

(iii) The product of an even function and an odd function is anodd function.

Remark 3. If f(x) is. an odd function then f(x) cos nxis also an odd function.

_ 1, _ _ 1, _
Hence a, = ;f_nf(x) dx =0anda, = ;f_nf(x) cosnx dx =0
Thus, for an odd function the Fourier coefficientsa, and a,are 0.
Also b, = %f_nnf(x) sinnx dx = %fonf(x) sinnx dx

(Since, f (x) sin nx is an even function.)

Remark 4. If f(x) isan even function then f(x) sin nx is an oddfunction.
Hence b, = %ffnf(x) sinnx dx = Ofor alln.

Using the above remarks, we give below the working rules for calculatingthe Fourier

coefficientsof a periodic function with period 2.



Working Rules.
Let £ (x) be a periodic function with period2m.Suppose the given interval is (—, 7).
Step 1. Check whether f(x) is an even function or an odd function.

Step 2. (i) If f(x) is aneven function then b,, = 0 for all n and
2 s
a, = ;ff(x) cosnx dx foralln >0
0
(ii) If f(x) is an odd function then a,, = 0 for all n > 0 and
T
2
a, = ;ff(x) sinnx dx
0
Step 3. Iff(x) is neither an even function nor an odd function in(—m, m)or if the given

interval is not(—m, ), then calculate the Fourier coefficientsby using Euler's formulae (refer
Remark | )

The following results on integration will be useful in calculating the Fouriercoefficients.

Result 1. Bernoulli's formula.

fudv =uv—u'v,+u'v,—u""vg+ - where
o du . d*u . d*u
u =—,u" =— ,u" = — etc
dx’ dx?’ dx3

and v, =fvdx,v2 =fv1dx,v3 =J.v2dx, ...etc

. . edx .

Result 2. (i) [ e** sinbx dx = =i [a sin bx — b cos bx]
. eax .
(i) [ e** cos bx dx = = [a cos bx — b sin bx]

Result 3. Noe let g(x) = sinnx
Then g (x + 2;”) = sin [n (x + 2;”)] = sin(nx + 2m) = sinnx = g(x)
Hence g(x) = sinnx is a periodic function with period 27" where n is a positive integer.

Solved Problems.
Problem 1. Determine the Fourier expansion of the function f(x) = x where -t < x <m

Solution. Obviously f(x) = x is an odd function



Hence a,, = 0 foralln > 0.
Now, b, = %ffﬂf(x) sinnx dx = %f_nnx sinnx dx
Taking u = x and dv = sin nx dx and applying Bernoulli’s formula we get

2 [—x cos nx N sinnx1”

by ==
"o n n?z |,
2
= ——[m cosnn]
nm
_ —2(-n"
- n
_ 2(_1)n+1
- n
2 .
Hence x = Yo, (—1)"*1 ~sinnx

5 sin x sin2x+sin3x
R 2 3

Problem 2. Find the Fourier series for the function f(x) = x? where —m <x <= and
deduce that

. 1 1 1
(I) 1—2+2—2+3—2+"'=

77.'2
6
1 1 1 2
(i) == =5
1 2 3 12
e 1 1 1 w2
i+ +5— ==
()12 32 52 8

Solution. Let f(x) = x2. We note that is an even function.
Vs Vs
1 1
Hence,a, = — ff(x) dx = — fxz dx
VA T
-7 -7

—2 (7,2 v 2] ;
_nfo x“ dx (~ x“ is an even function)

Where, a,, = %ffnf(x) cosnx dx

1w
=—=[" x2%cosnx dx
TY—T



V3
2
= —f x? cosnx dx ( x% cosnx is an even function)
I
0

Now by applying the Bernoulli’s formula
judv =uv—u'vy +u'v, —u"vg + -

Where u = x%and dv = cosnx dx sothatu’ = 2x,;u" = 2;u"" =0

27 cos nx]n _ 41"
n2

2
Now,a,, = ;[ . —

Now, b, = %f_’;f(x) sinnx dx = %f_”nxz sinnx dx =0 (since x?sinnx is an odd

function).

2 _\n
Hence, x2 = ”? +4Y% ((Dﬂ) ...................... (1)

n2

Deduction. (i) Put x =  in (1) and we get

2 7T2+4(1+1+1+ +1+)
T2 = — g )
3 12 22 32 n?
I SIS SRNOPTINE SIS S i
Hence,4(12+22+32+ to+ )—n s =5
1,1 1 m?
Hence, ;+ -+ + =

(if) Put x = 0 in (1) and we get

(i) Hence, we get1—12—2i2+3—12— ==

Adding the results (i) and (ii) we get

1 1 1 1 2
2(12+§+§+ e ) —

2

1 1 1
Hence, s+ + 5+ =+

Problem 3. Show that in the range 0 to 2r the Fourier series expansion for e* is

- COS nx i (Sln nx)
n2 + 1 n?+1
n=1 n=1

Solution. Let f(x) = e*



21

21
1 1 X 1 x)2m
a0=;ff(x) dx=;fe dx=;[e 16" =
0

27'[_1

T

Now taking, I, = %foznex cosSnx dx................... (1)

21
= [e* cosnx]3" + nf e*sinnx dx
0

2

= (e?™ — 1) + n|{e* sinnx}s"™ — nf e* cosnx dx
0

oI, = (e?™ —1) —n?l,

o m? + DI, = (e — 1)
e?™ —1
w L=
n <n2+1>
1 /e —1
H -
ence,a, = <n2+1>

Similarly, we can prove that b, = — (n((eTl)) (verify)

o

1 4 i cosnx Z (sinnx)
2 n2+1 nz+1

n= =

e?™ —1

I

Let=

Problem 4. If f(x) ={_x .lf_n <x<0

x if O<x<m expand f(x) as a Fourier series in the interval

(—m, ).

Solution. Clearly f(—x) = f(x) for all x € (—m,m). Hence f(x) is an even function in

(—m,m). Hence the function can be expanded as a Fourier series of the form %+

1
Z=1 an cos nx where a, = — J_ f(x) dx.

Now, a, = %f_”nf(x) dx = %f:f(x) dx (Since f(x) is an even function)

T T
_2f d_2x2 _2x2_
' x x_TI.'Z |2 T
4 0

2 T
Now, a,, = ;fo x cosnx dx



T

2 [xsinnx1® 2 _ 2 -
=— —— | sinnx dx = — [cosnx]§
0o Nm n

0

/A n

[(-D"-1]

nnz

4
={_W if nisodd

0 if nis even
Hence, f(x) == — —Z (COS”X) where 7 is odd.
) = T 4 cosx+cos3x+c055x+ ]
=50 32 52

Note. This problem can also be re stated as f(x) = |x| in the interval -7 < x < .

m+2x if —m<x<0

Problem 5. Find the Fourier series of the function f(x) = { T—2xif 0<x<m

2

Hence deduce that — + — + — + -+ = =,
1 3 5 8

Solution. Here the given function is f(x) = m — 2|x| and hence it is an even function. Hence
b,, = 0 for all n.

Now, a = = [ (r — 2x) dx = — = [( = 2x)?]§ = —=[(-m)? = %] = 0
Also, a,, = %fon(n — 2x) cosnx dx

sin nx

s
=—|(r — 2x) + fsmnxdx
T T
0

4
=0+ —[—cosnx]¥
T

nZ
4
= W[_ cosnx]|g
4
= [-(=D"+1]

0 if nisodd
{ if nis even

mn2

=23 (e



Putting x = 0 in the above result we get f(0) = % LR 51+ ]

S = F+§ +— + - ] (since f(0) = m, by definition)

. 1+1+1+ 7'[2
ence, 3+ 33+ 52 =g

Problem 6. Find the Fourier series for f(x) = | sinx | in (—m, ) of periodicity 2.

Solution. We note that f(x) = |sinx | is an even function of x through sinx is an odd
function. Hence f (x) will contain only cosine terms in its Fourier series.

Let f(x) = % + Y1 @y COSNX
1 .
Now, a, = ;f_n | sinx | dx

= %f: | sinx | dx (Since | sin x | is an even function)

T

ZJ ]
=—| sinx dx
T

0

= [—cosx]T

=E[1+1]
T

SRS

Now, a,, = = f | sinx | cosnx dx

0 T

1 1
a, =— f|sinx|cosnx dx+—f|sinx|cosnx dx
s s

-7 0

= %fon sinx cosnx dx (~ f(x) = |sinx| = sinx in [, 7])

=||H

f sin(n + 1)x — sin(n — 1)x] dx

_1 [_ cos(n+1)x n cos(n+1)x

n+1 n+1

T

] ifn+1

1 1 1 1 n-1 _
_ ;[_n—ﬂl{(_l) ~ 1B+ — (D) 1}



1 1 1
=;[‘m“+(‘“ b+ — {1+ (D)7

1, -2
_;<n2_1){1+(—1) }

0 if nisodd
o = = 4

2 (M. 2 (Mo, . 2 [sin2x]™
Ifn=1,a, == sinxcosx dx == sinx d(sinx) == = 0.
w0 w0 nl 2 1y

4 - CoS 2nx
Ly (4n? —1)
n=1

_ 2 4 i cos 2nx
nom . (2n-1D(2n+1)
n=

. si |_2 45:[ cos 2nx
CmA =TT JA@n—DEn+1)
n=

«f() = Isinx] = =~

~“lif-m<x<0
Problem 7. If f(x) =4 ,* .
- if 0<x<m

Solution. We note that f(x) is a periodic function with period 2.

Now, a, = %f_nnf(x) dx = %f_on (—g) dx + %f: (%) dx

- [(-Doan) + 2]

- D@D
A A
= _Z-I_Z: 0

Now, a,, = %ffnf(x) cosnx dx = f_on (—%) cosnx dx + %fon (E) cosnx dx

7 [sin nx]0 T [sin nx]"
-1 0

4l n 4l n

s

T
7[0=01+7[0-0]=0

Now, forn > 1



0 T

b, =% ff(x)sinnx dx = f(—%)sinnx dx+f(%)sinnx dx

-7 0

T 0 T T
Hence, b, = — J_ sinnx dx + 7 [ sinnx dx

T [COS X"
_Z[ - ]0=—E[cosnn—1]

Thus b,, = —ﬁ [(—=1)" —1]

Hence b; = —7[-1-1] =~

b, = [1—1] = 0etc

_T
16
Hence f(x) = gsinx + gsin 3x + -
(ie) f(x) = E[sinx + Zsin 3x + = sin 5x + ]
2 3 5
Problem 8. Find the Fourier series for defined in f(x) = e* defined in [—m, 7]

Solution. a, = %f_nnf(x) dx = %f_nnex dx = %[ex mo= %(e” e M) = Zsmhn.

T

2
Now, a,, = %ffnf(x) cosnx dx = %fo "eX cosnx dx

11 e* 4
= —|z=5—= (cosnx + nsinnx)
w112 + n? .
using the formula in integration [ e®* cos bx dx = —— (a cos bx + b sin bx
a?+b?

1

a, =——— e cosnm — e " cosnmw
" n(n2+1)[ ]

_cosnm(er—e ™) (—1)"Zsinhm
B n(n?+1) (% +1)

Now, b, = %ffnf(x) sinnx dx = %f_nnex sinnx dx

1 edx T
= —|—=——(sinnx — ncosnx)
2 2 (
mlls+n -



[using the formula [ e%* cos bx dx = # (a sin bx — b sin bx) in integration]

= m[e”(o —ncosnm) — e (0 — ncosnm)]

3 n(—=1)"(e™™ —e™) 3 —2n(—1)"sinhw
- n(n?+1)  m(n?+1)

(o]

sinhm 2sinh7 o (—Dn 2 sinhw o n(—1)"*1
* = + cosnx + Z

oeX = sin nx
nz+1

T s n?+1
n=1 n=1

sinh 7 - (=D"cosnx n(—1)"sinnx
= 1+2 - = .
nz+1 nz+1

n=1
Exercises.

1. Obtain the Fourier coefficient a, for the following functions.
(i) fW=x@Rr—x)in0<x<2m
(i) f)=|x|in—-nTt<x<m
(iijf(x)=x?in—-w<x<m
(iV)f(x)=x+x?in—-nt<x<m
V) fx)=e*in—-mt<x<m
(Viyf(x) =|cosx|in—-mT<x<m

i) £ = {°,

in—-n<x<0
in 0<x<m

|{ 2 in 0<x< %ﬂ
(viii)f (x) = 4 1 in Z<x<X
l
kO in —<x< 21
2. Obtain the Fourier coefficients b,, for the following functions.
(i) fx)=x%2in0<x<2m

. _ 0 in 0<x<m
(")f(x)_{Zn—x in T<x<2m

(ii)f(x) =sin(x/2)in—nT<x<m

. -7 in—-mt<x<0 :
(|v)f(x)={ ”x ”iln g<i<nHencefmd b

3. Find the Fourier coefficients b,, for the following functions given below.

(i) f(x)=x2%in0 < x < 2m. Hence find b,
. _ (- in—-nt<x<0 .
(i) f(x) = {  in O<x<m Hence find b

=, hn<rE

4. Obtain the Fourier series for the functions given below.

. bi+b,+b
Hence find 2—=—



1 in O<x<m

(i)f(x):{z in mn<x<2m

rw={; 5

Gif@) = {73 o e

e = {7, RS
sinx in 0<x<

_ = ST . . . C e
5 If f(x) = {O in m< x<o2m obtain the Fourier series forf(x) of periodicity

27 and hence evaluate — + — + — + ---
1.3 3.5 5.7
6. Find the Fourier series for f(x) =n? —x?in—-n<x<m

1+Z in—-m<x<0
7. Obtain the Fourier series for f(x) given by f(x) = 4

2 .
1—% in 0<x<m

8. Express f(x) = (m — x)? as a Fourier series in 0 < x < 2w and hence find the sum
of the series — + — + — + -+
1 2 3

x in (0,m)

2r—x in (m 2m) with

9. Find the Fourier coefficients a,, of the function f(x) = {
periodicity 2m
5.3 FOURIER SERIES - HALF RANGE

In several engineering and physical applications, it is required to obtainthe Fourier
series expansion of a function in an interval [0, [] wherel ishalf the period.Such an expansion

is calledHalf Range Fourier series.

Half Range Sine Series.

Supposef (x) is defined in the interval[0, [] We now define a newfunction as follows

(f  if 0<x<l
(x)_{—f(—x) if —-1l<x<0"

function defined in theinterval [—[,[], Hence the Fourier series of F(x)contains only sine

It is clear from the definition that F(x) is an odd

terms. Further in the interval [0,1], F(x) = f(x)and hence the sine series of F(x)gives the

required sine series of f(x) in the interval [0, []. Thus

nmnx )

fx) = z b,, sm Where b,, =17 ff(x)




Half Range Cosine Series.

f(x) if 0<x<l

We defineF (x) = {f(—x) if —1<x<0

Since F(x) = f(—x).F(x) is an even functiondefined in the interval [—[,[]. Hence the
Fourier series of F(x) contains only cosine terms. Further in the interval [0, (], F(x) = f(x)

and hence the cosine series of F(x) gives the cosine series of f(x) in [0, ].

Thus

©
nnx
COS

f(X)—7°

n

Where,

ff(x) dx and a,, = jf(x) cos n7lrx) dx

Note: If f(x) is defined in the interval [0, ] then

T
2
= E']-f(x) cosnx dx
0

Solved Problems.
Problem 1. Find the Fourier series for f(x) = kin0 < x < m.

Solution. The Fourier sine series of f(x) in the interval 0 < x < m is given by f(x) =

> _, b, sinnx where b,, = %fol f(x) sinnx dx.

Zk cosnx]™

Now, b, = f k sinnx dx = ] = % [— cosnm — (—1)]
0

T n

ak
_ 2k _ )= if nisodd
SN {

0 if niseven

Hence the required sine series f(x) = Yoy (2 sm(Zn —1Dx
_ 4k [sinx sin3x = sin5x ]
Trla 3 5

Problem 2.Prove that the function f(x) = x can be expanded

() Inaseries of cosinesin 0 < x < mas



T ncosx+c053x+c055x
SRR P 32 52

Hencededucethat e + —+ -

(if) Ina series of sinesin 0 < x < m as

sin x 4 sin 2x 4 sin 3x
1 22 32

Hence deducethat 1 — = + 1 —... = Z
3 5 4

X =2

21T
Solution. (i) ap = 2 ' f(x) dx =2 [Fx dx = 2|5 =n

2

. a @
ence - =7

Now, a,, = %fonf(x) cosnx dx = %f:xcos nx dx

2 xsinnx+cosnx T

nl n n? |,
_ 21cosnx 17
|l n? n2|
2[[=Dr - 1]
“m| n?
4 < odd
fay = { — if niso
0 if niseven

Hence the cosine series for f(x) = x in (0, ) is given by

/[ 45: cos(Zn—1)x
— (2n—1)?

m  4f[cosx cos3x cosb5x

27112-I_32-|_52

Putting x = 0 in the above result x = g 2 1% +t + >+ ]
" 1 N 1 4 1 4. n2
ence,— 12 32 52 8 .

(i) Now, b,, = %fonf(x) sinnx dx = %fonx sinnx dx

[ cosnx . sin nx]n
0

2
13 n n2



21 mcosnm
2o

n

_ —2(=»"

n

The sine series for f(x) = x in [0, 7] is given as

o _ i (—D)™*'sinnx _sinx sin2x N sin 3x ]
ence x = 1 - = - > .
n=

Putting x = % in the above result we get

s
2

sin(m/2 sint sin(3nw/2 sin 2w
_,[sinG/2) _sinm sinG3n/2) '
1 2 3 4

om 1 1 1
(le)z—z I—§+§—"'].

1

H 1 + =2
ence 313 =7

Problem 3. Find the Fourier (i) cosine series and (ii) sine series for the function f(x) = m —

x in the imterval (0, ).

Solution. (i) The Fourier cosine series of f(x) is given by f(x) = ag + Xp—; @, COS X
_zf 2l X2
Gy = — (r—x) X =—(mx = O—n )=
0

T
2
Now, a, =Ef(rr—x) cosnx dx
0

sinnx  cos nx] T

ZE[(T[—X) n n? g

_2[ cosnx 1]

b3 n2 n2

= Sl-D™ +1]

_ {i if nisodd

n?
0 if niseven

LT, 4y cos(2n—-1)x
Hence, m —x =~ + n2n=1—(2n_1)2
T 4 4 rcosx 4 cos 3x 4 cos 5x
2 ml 12 32 52

X =



(i) The Fourier sine series of f(x) is given by Y.>>_; b, sin nx where b,, is given by

2 [
bn=;f(7r—x)sinnx dx
0

2 cosnx sin nx]™
= 2| (- x) S22 4 1)
T n n 0

sinnx __ 2 [sin X sin 2x sin 3x

+ + +]

Hencer —x = 237, N > 3

n

Problem 4. Find the half range cosine series for the function f(x) = x2? in 0 < x < m and

hence find the sum of the series 1 — 12 + 12 - iz + -
2 3 4

2 x3]n __2m?
0

Solution. a, = %fonf(x) dx = %f:xz dx = ;[?

2
Hence 22 ==
2 3

T
2
Now,a, = Eff(x) cosnx dx
0

2 (T
==["x?cosnx dx
]

. . i3
[xz sinnx | 2xcosnx  2sin nx]
0

2
14 n n2 n3

_ 2 [271 cosnx]
14 n2
_4(=D"
==

The cosine series for f(x) = x? is given by

2 (1)
x2=?+4z(n2) cos nx
n=1

2
w COSX , COS2X  COS3X
=—+4[— — +]
3 1 2 3
m? COSX  COS2X . COS3x
=——4 T T . T
3 1 2 3



1 1 1 1 m?
Hence F_? §—42+ E

Problem 5. Obtain a cosine series for f(x) =e*in0 < x < .

2(e"—1)

Solution. ao——f f(x) dx——f e* dx

(e™-1)

T

Hence &2 =
2
2
Now,a, = ;ff(x) cosnx dx

2 rm
— = X
==, e*cosnx dx

N

__ 2 [e*(cosnx+nsin nx)]n
124+n?2 0

31

__ 2 [eTcosnx 1 ]
nl n2+1 n2+1

_ 2 'e”(—1)"—1]

T n n2+1

Hence the cosine series for f(x) = e* in 0 < x < 7 is given by

. _e”—1+2§:[e”(—1)"—1] COoS nx
/[

T nz+1
n

x in 0<x<m/2

Problem 6. Find the Fourier sine series of the function f(x) = { .
mT—xin w/2<x<m

Solution. The sine series for f(x) is given by f(x) = X.o_; by, sin nx. Where
TL'
2 :
= Eff(x) sinnx dx
0
Now, b,, = %fon/z x sinnx dx + %f;z(n — x) sinnx dx

. n . T
2 [ xcosnx sinnx]z 2| (m—x)cosnx sinnx
— + —
0

T n n? T n n? |

2
2| = nm sm(nn/Z) smnn T nm 1 . nm
_;[_%m(zp I M T cos () 4 o sin (2]

2



4 . nm
=— Sin (—)
mn 2

4 1 . .
Hence f(x) = —Xn=13Sin (nz—”) sin nx
4
n

sinx sinmsinx sin(3mw/2)sin3x l
+ + + o
12 22 32

B 4 r1sinx sin 3x+sin 5x ]
ol 12 32 52

Problem 7. Find the half range sine series for f(x) = x(m — x) in (0, ). Deduce that

1 1 1 w3

BT ETETTR
Solution. The half range sine series for f(x) in (0, ) is given by

f(x) = ¥%_, b, sinnx. Where b,, = %fonf(x) sinnx dx

Now, b,, = %f:x(n — x) sinnx dx

= %[(nx —x2) (_ CC: nx) — <_ sj:;nx) (mr—2x) + Corslsnx (—2)]:

(by using Bernoulli’s formula)

2 cosnx 2cosnx 2
= — [(—7‘[2 + %) -
T n

n3 n3

= (1 — cosnm)

~ 3
R

Hence f(x) = ;?:1%[1—(71;1) ]sin nx

4r12sinx 2sin3x 2sinb5x
[ i+ + +]

rl 13 33 53

_8 sinx+ sin3x+sin5x+ ]
IRANE 33 53

Put x = g in the above result we get

811 1 1
FG)=zlmzts



N4 T 811 1 1
@3(n-3) =25 -5+5 ]

w8yl 1,1 ]
=2z $ts

1 1 N 1 w3
13 3% 53 32

Problem 8. Find the Fourier constant b, for the function x sin x in the half range 0 < x < m.
Solution.

Let f(x) —xsinx. Then the half range Fourier series for f(x) is given by f(x) =

Ym—1 by, sin nx. Where b,, is given by the formula
T
2
b, = Ejf(x) sinnx dx
0

= %fon(x sinx)sinnx dx.................. (1)

Putn = 1in (1) and we get
s
2
b, =—fxsin2x dx
T
0

__ 2 mx(1—cos 2x)
= nfo : dx

1 [xz xsin2x  cos Zx]n
2 2 4 0

=1 (”_2 14 l)
T\ 2 4 4
Hence the Fourier constant b; = g

Exercise.

1. Obtain the half range sine series for the following functions
(i) fx)=x%in0<x<1
(i) fx)=e*in0<x <1
(iiff(x) =x3in0<x<m
2ox ind<x<?2
(V) =4 * 1 ’

Xx—= in -<x<1

4 2

(V) f(x) =cos2xin0<x<m
2. Obtain the half range cosine series for the following functions.



(i) f(x)=sinxin 0<x<m

- o<
(1 in 0<x<a/2
(imf ) = {—1 in a/2<x<a

5.4 FOURIER SERIES -ARBITRARY RANGE

So far, we have delt with Fourier series expansions having periods 2m or . But in
many of the problems the functions may have arbitrary periods(not necessarily2m). We now
obtain Euler's formulae for Fouriercoefficients for functions having period 2! wherel is any
positive integer.

Suppose f(x) is defined in the interval (=1, ).
Let z = %.Hencex = Z;Z Also, whenx = —I wehave z = —wand when x = [ we have z =

mHence, the Fourier series of F(z) is given by

a
F(z) = ?O + Z(an cosnz + b, sinnz).
n=1

Then we have a, = - f_”nF(z) dz

/A

T T
1 1
n = — fF(z) cosnz dz and b,, = - fF(Z) sinnz dz
-1 -1

Hence f (%Z) = % + Y1 (ay, cosnz + b, sinnz)

Where a, = % f_”n f (%Z) dz;

2 [ 1o rann, =2 [ (E) s
In = — f —)cosnz dz and b, = — f —)sinnz dz
-1 -1
We now go back to the original variable x by using the transformations x = %Z so that dx =

L dz.

T

Thus

flx) = % + 2 [an cos (?) + b, sin (?)]

Where



[
1
0o=7 | fx)d
a l_fl x) dx
l
a, =%ff(x) cos (?)dx
21

l
b, = % f £(x) sin (nlix) dx
21

Note. The above formulae are valid for any interval of length 21.
Solved Problems.

Problem 1. If f(x) = x is defined in the interval —1 < x < [ with period 21. Find the Fourier

expansion off (x).

Solution. Since f(x) = x is an odd function a,, = 0 forall n > 0.
2 rl .

Now, b, =7 J_ x sin (g) dx

= % [— lin cos (@) + nlz sin (g)]: (Bernoulli’s formula)

l 22
2 —1% cosnm
Tl nm

2 (D)

nm

B 2(_1)n+1l
N nrm

. . 2 -t
Hence the Fourier series is x = =37, [( 31 sin (nlﬂ)]

Problem 2. Find the Fourier series for f(x) = x? in—1 <x < 1.

Solution. Since f(x) is an even function b,, = 0 for all n

1
Now, ap =2 [ f(x)dx =2 [, x*dx =2 [%3] =2
0

1
a, = Z'fx2 cosnmx dx
0

9 . . 1
_9 [x sinnmx | 2xcosnmx  2sin nnx]
nm n2m? n3n3 1



(Using Bernoulli’s formula)

2cosnm
=2(55)
nem

_4E=nn
n2m?

Hence the Fourier series for f(x) in (—1,1) is given by

2= % Z[( 1)"cosnnx

Problem 3. Find a Fourier sine series for f(x) =ax+bin0 <x < L.

Solution. Since we have to find only the sine series of the Fourier series for the given

function, we find only the Fourier coefficients b,, which is got from the formula
l
b = 2 . mmx d
n =7 jf(x)sm(T) x
-1

—f ,(ax + b) sin (nnx) dx

2 —(ax+b)lcos(mltx) al? sin(@) !
1 nm n?n?

0

_ 2[=l(al+b)icosnm | Dl /o .
= T nn] (justify)
_ 2 [b=(al+b)(-1)" .

i — ] (verify)

Hence the sine series for f(x) is given by

ax+b = %2 lb — -I;lb)(—l)"l sin (nlﬂ)

Problem 4. Find the half range Fourier sine series of f(x) =xin0 < x < 2.

Solution. The half range Fourier sine series for f(x) is given by

fx) = i b,, sin (nz_n)

Where b,, = %ff(x) sin (nz—”)



+
nm n2m?

B [—2 cos (nzix) 4 sin (nzix)‘2
0

_ (—4 coS nn)
B nm

e

n

Hence the Fourier series for f(x) is given by

[ee)

S [ )

n=1

Exercises.
Find the Fourier series to represent the following functions:
(-1 in —-2<x<0

L fe ={ 1 in 0<x<2
2. fx)=x?-2in-2<x<2
3. f(x)=2x—x%in0<x<3

(1 in —-1<x<1

4 fe={ 0 inl<x<3
5 f)=(x—-12?in0<x<1
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