DIRECTORATE OF DISTANCE & CONTINUING EDUCATION MANONMANIAM SUNDARANAR UNIVERSITY TIRUNELVELI- 627 012

B.Sc. Physics

II Semester

Vector Calculus and Fourier Series

Vector Functions

If for each value of a scalar variable u, there corresponds a vector f, then f is said to be a vector function of the scalar variable u. The vector function is written as f(u).

Eg., The vector $(a\cos u)\vec{i} + (b\sin u)\vec{j} + (bu)\vec{k}$ is a vector function of the scalar variable u.

Limit of a vector function

A vector v_0 is said to be the limit of the vector function f(u), if $\lim_{u \to u_0} |f(u) - v_0| = 0$.

i.e.,
$$\lim_{u \to u_0} f(u) = v_0$$
.

Derivative of a vector function

A vector function f(u) is said to be derivable or differentiable with respect to u, if $\lim_{\Delta u \to 0} \frac{f(u + \Delta u) - f(u)}{\Delta u}$ exists. This limit is called the derivative or differential coefficient of f(u) with respect to u and is denoted by $\frac{df}{du}$.

Note 1: If f(u) is a constant vector, then its derivative is a zero vector because $f(u + \Delta u) - f(u) = 0$.

Note 2: If $f(u + \Delta u)$ is written as $f(u) + \Delta f$ then $f(u + \Delta u) - f(u) = \Delta f$ and $\frac{df}{du} = \lim_{\Delta u \to 0} \frac{\Delta f}{\Delta u}$.

Theorem 1:

- (i) If \emptyset is a scalar function of u and 'a' a constant vector, then $\frac{d(\emptyset a)}{du} = a \frac{d\emptyset}{du}$
- (ii) If 'a' is also a function of u, then $\frac{d(\emptyset a)}{du} = \frac{d\emptyset}{du} \vec{a} + \emptyset \frac{da}{du}$

Proof:

(i) We have
$$\frac{df}{du} = \lim_{\Delta u \to 0} \frac{\Delta f}{\Delta u}$$

Now, $\frac{d(\emptyset a)}{du} = \lim_{\Delta u \to 0} \frac{\Delta(\emptyset a)}{\Delta u} = \lim_{\Delta u \to 0} \frac{(\emptyset + \Delta \emptyset)a - \emptyset a}{\Delta u} = \lim_{\Delta u \to 0} \frac{[(\emptyset + \Delta \emptyset) - \emptyset]a}{\Delta u}$

$$= \lim_{\Delta u \to 0} \frac{\Delta \emptyset}{\Delta u} a = \frac{d\emptyset}{du} a$$

(ii) Now, $\frac{d(\emptyset a)}{du} = \lim_{\Delta u \to 0} \frac{\Delta(\emptyset a)}{\Delta u} = \lim_{\Delta u \to 0} \frac{(\emptyset + \Delta \emptyset)(a + \Delta a) - \emptyset a}{\Delta u}$

$$= \lim_{\Delta u \to 0} \frac{\emptyset a + \emptyset \Delta a + a \Delta \emptyset + \Delta \emptyset \cdot \Delta a - \emptyset a}{\Delta u}$$

$$= \emptyset \lim_{\Delta u \to 0} \frac{\Delta a}{\Delta u} + a \lim_{\Delta u \to 0} \frac{\Delta \emptyset}{\Delta u} + \lim_{\Delta u \to 0} (\frac{\Delta \emptyset}{\Delta u} \cdot \Delta a)$$

$$= \emptyset \lim_{\Delta u \to 0} \frac{\Delta a}{\Delta u} + a \lim_{\Delta u \to 0} \frac{\Delta \emptyset}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta \emptyset}{\Delta u} \cdot \lim_{\Delta u \to 0} \Delta a$$

$$= \emptyset \lim_{\Delta u \to 0} \frac{\Delta a}{\Delta u} + a \lim_{\Delta u \to 0} \frac{\Delta \emptyset}{\Delta u} \quad \text{(since, } \lim_{\Delta u \to 0} \Delta a = 0\text{)}$$

Thus, $\frac{d(\emptyset a)}{du} = \frac{d\emptyset}{du} \vec{a} + \emptyset \frac{da}{du}$.

Theorem 2: If A and B are functions of scalar variable u, then prove that $(i)\frac{d(A+B)}{du} = \frac{dA}{du} + \frac{dB}{du}$, $(ii)\frac{d(A\cdot B)}{du} = \frac{dA}{du}B + A\frac{dB}{du}$ and $(iii)\frac{d(A\times B)}{du} = \frac{dA}{du}\times B + A\times \frac{dB}{du}$.

Proof: (i)
$$\frac{d(A+B)}{du} = \lim_{\Delta u \to 0} \frac{(A+\Delta A) + (B+\Delta B) - (A+B)}{\Delta u}$$

$$= \lim_{\Delta u \to 0} \frac{A + \Delta A + B + \Delta B - A - B}{\Delta u} = \lim_{\Delta u \to 0} \frac{\Delta A + \Delta B}{\Delta u} = \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta B}{\Delta u}$$
$$= \frac{dA}{du} + \frac{dB}{du}$$

(iii)
$$\frac{\frac{d(A \cdot B)}{du}}{\frac{du}{du}} = \lim_{\Delta u \to 0} \frac{\frac{(A + \Delta A) \cdot (B + \Delta B) - (AB)}{\Delta u}}{\frac{AB}{\Delta u}}$$
$$= \lim_{\Delta u \to 0} \frac{AB + A\Delta B + \Delta A \cdot B + \Delta A \cdot \Delta B - (AB)}{\Delta u}$$
$$= \lim_{\Delta u \to 0} A \frac{\Delta B}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} B + \lim_{\Delta u \to 0} (\frac{\Delta A}{\Delta u} \Delta B)$$

$$= \lim_{\Delta u \to 0} A \frac{\Delta B}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} B + \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} \lim_{\Delta u \to 0} \Delta B$$

$$= \lim_{\Delta u \to 0} A \frac{\Delta B}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} B \text{ (Since, } \lim_{\Delta u \to 0} \Delta B = 0).$$

$$= A \lim_{\Delta u \to 0} \frac{\Delta B}{\Delta u} + \lim_{\Delta u \to 0} \frac{\Delta A}{\Delta u} B = \frac{dA}{du} B + A \frac{dB}{du}$$

Similarly do the (iii) part.

Problem 1 : Find the derivatives of $\vec{A} \cdot \vec{B}$ and $\vec{A} \times \vec{B}$ with respect to u if $\vec{A} = u^2 \vec{\iota} + u \vec{\jmath} + 2u \vec{k}$ and $\vec{B} = \vec{\jmath} - u \vec{k}$.

Solution : (i) Find $\frac{d}{du}(\vec{A} \cdot \vec{B})$

$$\vec{A} \cdot \vec{B} = (u^2 \vec{i} + u \vec{j} + 2u \vec{k}) \cdot (\vec{j} - u \vec{k}) = 0 + u - 2u^2 = u - 2u^2$$

$$\frac{d}{du}(\vec{A}\cdot\vec{B}) = \frac{d}{du}(u - 2u^2) = 1 - 4u.$$

(i) Find
$$\frac{d}{du}(\vec{A} \times \vec{B})$$

$$\vec{A} \times \vec{B} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ u^2 & u & 2u \\ 0 & 1 & -u \end{vmatrix}$$

(Ans.)
$$(-2u-2)\vec{i}+3u^2\vec{j}+2u\vec{k}$$

Scalar point functions

If for every point P in a domain D of space, there corresponds a scalar \emptyset then \emptyset is said to be a single valued scalar point function defined in the domain D. The value of \emptyset at P is denoted by $\emptyset(P)$ (or) $\emptyset(x,y,z)$ if P is (x,y,z). The function \emptyset is said to be the scalar field in D.

Vector point function

If for every point P in a domain D of space, there corresponds a vector \emptyset then \emptyset is said to be a single valued vector point function defined in the domain D. The value of \emptyset at P is denoted by $\emptyset(P)$ (or) $\emptyset(x,y,z)$ if P is (x,y,z). The function \emptyset is said to be the vector field in D.

Level surfaces

The surfaces represented by the equation $\emptyset = c$ for different values of c are called level surfaces. No two level surfaces will intersect each other.

Directional derivative of a scalar point function

The directional derivative of \emptyset at any point P in the direction specified by the direction cosines l, m, n is $l \frac{\partial \emptyset}{\partial x} + m \frac{\partial \emptyset}{\partial y} + n \frac{\partial \emptyset}{\partial z}$.

Gradient of a scalar point function

If \emptyset is a scalar point function, then the vector $\frac{\partial \emptyset}{\partial x}\vec{i} + \frac{\partial \emptyset}{\partial y}\vec{j} + \frac{\partial \emptyset}{\partial z}\vec{k}$ is called the gradient of \emptyset . This vector is written as grad \emptyset or $\nabla \emptyset$ where ∇ (read as 'del' or 'nebla') stands for $\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}$.

Note 1

The operator ∇ is an operator whose function is to transform a scalar point function \emptyset into a vector point function.

The summation notation for gradient is $\nabla \emptyset = \sum \vec{i} \frac{\partial \emptyset}{\partial x}$.

The directional derivative of \emptyset in the direction specified by the unit vector \vec{e} is $\nabla \emptyset \cdot \vec{e}$.

Let the direction cosines of \vec{e} is l, m, n. Then $\vec{e} = l\vec{i} + m\vec{j} + n\vec{k}$.

Now,
$$\nabla \phi \cdot \vec{e} = (\frac{\partial \phi}{\partial x}\vec{i} + \frac{\partial \phi}{\partial y}\vec{j} + \frac{\partial \phi}{\partial z}\vec{k}) \cdot (l\vec{i} + m\vec{j} + n\vec{k}) = l\frac{\partial \phi}{\partial x} + m\frac{\partial \phi}{\partial y} + n\frac{\partial \phi}{\partial z}$$

which is the directional derivative of \emptyset in the direction whose direction cosines are l, m, n.

Note : Maximum value of the directional derivative of \emptyset is $|\nabla \emptyset|$.

Theorem

If \emptyset and ψ are scalar point functions, then prove that

- (i) $\nabla(k\emptyset) = k(\nabla\emptyset)$ where k is a constant
- $(ii) \qquad \nabla(\emptyset + \psi) = \nabla \emptyset + \nabla \psi$
- (iii) $\nabla(\emptyset\psi) = (\nabla\emptyset)\psi + \emptyset(\nabla\psi)$
- $(iv) \qquad \nabla\left(\frac{\emptyset}{\psi}\right) = \frac{\psi(\nabla\emptyset) \emptyset(\nabla\psi)}{\psi^2}.$

Proof: (i)
$$\nabla(k\emptyset) = \sum \vec{i} \frac{\partial(k\emptyset)}{\partial x} = \sum \vec{i}k \frac{\partial\emptyset}{\partial x} = k \sum \vec{i} \frac{\partial\emptyset}{\partial x} = k(\nabla\emptyset)$$

(ii) As in proof (i)

(iii)
$$\nabla(\emptyset\psi) = \sum_{\vec{i}} \vec{i} \frac{\partial(\emptyset\psi)}{\partial x} = \sum_{\vec{i}} \vec{i} (\frac{\partial\emptyset}{\partial x} \psi + \emptyset \frac{\partial\psi}{\partial x}) = \sum_{\vec{i}} \vec{i} \frac{\partial\emptyset}{\partial x} \psi + \sum_{\vec{i}} \vec{i} \emptyset \frac{\partial\psi}{\partial x}$$

$$=\psi\sum\vec{i}\frac{\partial\phi}{\partial x}+\emptyset\sum\vec{i}\frac{\partial\psi}{\partial x}=(\nabla\phi)\psi+\emptyset(\nabla\psi)$$

(iv) As in proof (iii).

Problem 2: Find the directional derivative of $x + xy^2 + yz^3$ at the point (0, 1, 1) in the direction whose d.c's are 2/3, 2/3, -1/3

Soln: Let
$$\emptyset = x + xy^2 + yz^3$$

Find
$$\frac{\partial \emptyset}{\partial x}$$
, $\frac{\partial \emptyset}{\partial y}$, $\frac{\partial \emptyset}{\partial z}$

Given
$$l = 2/3$$
, $m = 2/3$ and $n = -1/3$

The directional derivative is $l \frac{\partial \phi}{\partial x} + m \frac{\partial \phi}{\partial y} + n \frac{\partial \phi}{\partial z}$

$$= \frac{2}{3}(1+y^2) + \frac{2}{3}(2xy+z^3) - yz^2.$$

At the point (0,1,1) [Ans. 1]

Problem 3. Find \nabla \emptyset at (x,y,z) if \emptyset = x + xy^2 + yz^3

Problem 4: Find the directional derivative of $\emptyset = 3xy^2 - x^2yz$ at the point (1,2,3) in the direction of the vector $\vec{\imath} - 2\vec{\jmath} + 2\vec{k}$.

{Hint : Find $\nabla \emptyset$ then find \vec{e} as $\frac{1}{3}\vec{i} - \frac{2}{3}\vec{j} + \frac{2}{3}\vec{k}$. then find $\nabla \emptyset \cdot \vec{e}$. Ans. : -22/3}

Problem 5: Find the directional derivative of $\emptyset = x^3 + y^3 + z^3$ at the point (1,-1,2) in the direction of the vector $\vec{\imath} + 2\vec{\jmath} + \vec{k}$. {Ans. $\frac{21}{\sqrt{6}}$ }

Problem 6: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ (i.e.,) if \vec{r} is the position vector of the variable point (x,y,z) and $|\vec{r}| = r$. Show that (i) $\nabla \left(\frac{1}{r}\right) = -\frac{\vec{r}}{r^3}$ and (ii) $\nabla \left(f(r)\right) = f'(r)\hat{r}$.

Proof : Given $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$.

$$|\vec{r}| = r = \sqrt{x^2 + y^2 + z^2}$$
 (i.e.,) $r^2 = x^2 + y^2 + z^2$

Differentiating partially with respect to x. $2r\frac{\partial r}{\partial x} = 2x$. $\therefore \frac{\partial r}{\partial x} = \frac{x}{r}$

Similarly, $\frac{\partial r}{\partial y} = \frac{y}{r}$ and $\frac{\partial r}{\partial z} = \frac{z}{r}$

Proof of (i)
$$\nabla \left(\frac{1}{r}\right) = \left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)\left(\frac{1}{r}\right) = \vec{i}\frac{\partial}{\partial x}\left(\frac{1}{r}\right) + \vec{j}\frac{\partial}{\partial y}\left(\frac{1}{r}\right) + \vec{k}\frac{\partial}{\partial z}\left(\frac{1}{r}\right)$$

$$= \vec{i}\left(-\frac{1}{r^2}\frac{\partial r}{\partial x}\right) + \vec{j}\left(-\frac{1}{r^2}\frac{\partial r}{\partial y}\right) + \vec{k}\left(-\frac{1}{r^2}\frac{\partial r}{\partial z}\right)$$

$$= -\frac{1}{r^2}\vec{i}\left(\frac{\partial r}{\partial x}\right) - \frac{1}{r^2}\vec{j}\left(\frac{\partial r}{\partial y}\right) - \frac{1}{r^2}\vec{k}\left(\frac{\partial r}{\partial z}\right) = -\frac{1}{r^2}(\vec{i}\frac{x}{r} + \vec{j}\frac{y}{r} + \vec{k}\frac{z}{r})$$

$$= -\frac{1}{r^3}(x\vec{i} + y\vec{j} + z\vec{k}) = -\frac{\vec{r}}{r^3}$$

(ii) T.P. $\nabla (f(r)) = f'(r)\hat{r}$.

$$\nabla (f(r)) = \left(\vec{\imath} \frac{\partial}{\partial x} + \vec{\jmath} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z}\right) (f(r)) = \vec{\imath} \frac{\partial}{\partial x} (f(r)) + \vec{\jmath} \frac{\partial}{\partial y} (f(r)) + \vec{k} \frac{\partial}{\partial z} (f(r))$$
(complete the problem) {Hint $\frac{\vec{r}}{r} = \hat{r}$ }.

Problem 7: If $\nabla \emptyset = 5r^3 \vec{r}$ then find \emptyset .

Solution : We have, $\frac{\vec{r}}{r} = \hat{r} = r\hat{r}$

$$\therefore \nabla \emptyset = 5r^3r\hat{r} = 5r^4\hat{r}$$

We have, $\nabla \emptyset = \emptyset'(r)\hat{r}$

Integrating with respect to r $\int \phi'(r)dr = \int 5r^4dr$

$$\emptyset(r) = \frac{5r^5}{5} + c \text{ i.e., } \emptyset(r) = r^5 + c.$$

Problem 8: If $\nabla \emptyset = (6r - 3r^2)\vec{r}$ and $\emptyset(2) = 4$ then find \emptyset .

{Hint : Find the value of c using the condition $\emptyset(2) = 4$. (Ans. $\emptyset(r) = 2(r^3 - r^4 + 10)$.

Problem 9: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ (i.e.,) if \vec{r} is the position vector of the variable point (x,y,z) and $|\vec{r}| = r$, then show that

(i)
$$\nabla(\log r) = \frac{\vec{r}}{r^2}$$

$$(ii) \qquad \nabla r^n = nr^{n-1}\hat{r} = nr^{n-2}\vec{r}$$

(iii)
$$\nabla(\vec{r}\cdot\vec{a}) = \vec{a}$$
 where a is a constant vector.

(iv)
$$\nabla(\vec{a}\cdot\vec{r}) = 2\alpha \text{ if } \vec{a} = \alpha x\vec{i} + \beta y\vec{j} + \gamma z\vec{k}.$$

Proof: Given $\vec{r} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$.

$$|\vec{r}| = r = \sqrt{x^2 + y^2 + z^2}$$
 (i.e.,) $r^2 = x^2 + y^2 + z^2$

Differentiating partially with respect to x. $2r\frac{\partial r}{\partial x} = 2x$. $\therefore \frac{\partial r}{\partial x} = \frac{x}{r}$

Similarly, $\frac{\partial r}{\partial y} = \frac{y}{r}$ and $\frac{\partial r}{\partial z} = \frac{z}{r}$

(i)
$$\nabla(\log r) = \left(\vec{t}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)(\log r)$$

$$= \vec{t}\frac{\partial}{\partial x}(\log r) + \vec{j}\frac{\partial}{\partial y}(\log r) + \vec{k}\frac{\partial}{\partial z}(\log r)$$

$$= \vec{t}\left(\frac{1}{r}\frac{\partial r}{\partial x}\right) + \vec{j}\left(\frac{1}{r}\frac{\partial r}{\partial y}\right) + \vec{k}\left(\frac{1}{r}\frac{\partial r}{\partial z}\right)$$

$$= \frac{1}{r}\vec{t}\left(\frac{\partial r}{\partial x}\right) + \frac{1}{r}\vec{j}\left(\frac{\partial r}{\partial y}\right) + \frac{1}{r}\vec{k}\left(\frac{\partial r}{\partial z}\right) = \frac{1}{r}(\vec{t}\frac{x}{r} + \vec{j}\frac{y}{r} + \vec{k}\frac{z}{r})$$

$$= \frac{1}{r^2}(x\vec{t} + y\vec{j} + z\vec{k}) = \frac{\vec{r}}{r^2}$$

- (ii) As in the part (i)
- (iii) T.P. $\nabla(\vec{r} \cdot \vec{a}) = \vec{a}$

Given a is a constant vector. $\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}$ and

$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$

$$\vec{r} \cdot \vec{a} = (x\vec{i} + y\vec{j} + z\vec{k}) \cdot (a_1\vec{i} + a_2\vec{j} + a_3\vec{k}) = a_1x + a_2y + a_3z$$

$$\nabla(\vec{r}\cdot\vec{a}) = \left(\vec{\imath}\frac{\partial}{\partial x} + \vec{\jmath}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right)(a_1x + a_2y + a_3z)$$

$$= \vec{i}\frac{\partial}{\partial x}(a_1x + a_2y + a_3z) + \vec{j}\frac{\partial}{\partial y}(a_1x + a_2y + a_3z) + \vec{k}\frac{\partial}{\partial z}(a_1x + a_2y + a_3z)$$

$$= a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = \vec{a}$$

(iv) As in the part (iii)

Problem 10: If $\nabla \emptyset = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}$ and if $\emptyset(1,1,1) = 3$, find \emptyset .

Solution: Given, $\nabla \emptyset = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}$ (1)

We have,
$$\nabla \emptyset = \frac{\partial \emptyset}{\partial x} \vec{i} + \frac{\partial \emptyset}{\partial y} \vec{j} + \frac{\partial \emptyset}{\partial z} \vec{k}$$
(2)

From (1) and (2) we have
$$\frac{\partial \emptyset}{\partial x} = (y + y^2 + z^2)$$
(3)

$$\frac{\partial \phi}{\partial y} = (x + z + 2xy) \dots (4) \& \frac{\partial \phi}{\partial z} = y + 2zx \dots (5)$$

Integrating (3) w.r.to x, $\emptyset = yx + y^2x + xz^2 + f(y, z)$ (6)

Integrating (4) w.r. to y, $\emptyset = xy + zy + xy^2 + g(x, z)$ (7)

Integrating (5) w.r.to z, $\emptyset = yz + z^2x + h(x, y)$ (8)

From (6), (7) and (8) we get, $\emptyset = yx + y^2x + xz^2 + yz + c$

Given, $\emptyset(1,1,1) = 3$. Therefore, 1+1+1+1+c=3 = c = -1

Hence, $\emptyset = yx + y^2x + xz^2 + yz - 1$.

Problem 11 : Find Ø if $\nabla Ø$ is $(6xy + z^3)\vec{i} + (3x^2 - z)\vec{j} + (3xz^2 - y)\vec{k}$

(Ans. : $3x^2y + xz^3 - yz + c$)

Problem 12: Find the unit vectors normal to the following surfaces.

(i)
$$x^2 + 2y^2 + z^2 = 7 \text{ at } (1, -1, 2)$$

(ii)
$$x^2 + y^2 - z^2 = 1$$
 at (1,1,1) [Ans. $\frac{\vec{t} + \vec{j} - \vec{k}}{\sqrt{3}}$]

(iii)
$$x^2 + 3y^2 + 2z^2 = 6 \text{ at (2,0,1) [Ans. } \frac{\vec{t} + \vec{k}}{\sqrt{2}}$$

Solution : (i)Let $\emptyset = x^2 + 2y^2 + z^2 - 7$

$$\nabla \emptyset = 2x\vec{\imath} + 4y\vec{\jmath} + 2z\vec{k}$$

At
$$(1, -1, 2)$$
, $\nabla \emptyset = 2\vec{i} - 4\vec{j} + 4\vec{k}$

$$|\nabla \emptyset| = 6 \ (Verify)$$

Unit vector normal to the surface = $\frac{\nabla \phi}{|\nabla \phi|} = \frac{\vec{\iota} - 2\vec{\jmath} + 2\vec{k}}{3}$

(ii) & (iii) As in 1st part.

Problem 12: Find the equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point (1,-1,1).

Sol.: Let
$$\vec{r} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$$

Let
$$\emptyset = x^2 + 2y^2 + 3z^2 - 6$$

$$\nabla \emptyset = 2x\vec{i} + 4y\vec{j} + 6z\vec{k}$$

At
$$(1, -1, 1)$$
, $\nabla \emptyset = 2\vec{i} - 4\vec{j} + 6\vec{k} = \vec{P}$

Let
$$\vec{r_1} = \vec{\iota} - \vec{j} + \vec{k}$$

Equation of the tangent plane is $(\vec{r} - \vec{r_1}) \cdot \vec{P} = 0$

$$x-2y+3z-6=0$$
 (Verify)

Problem 13: Find the equation of the tangent plane to the surface $x^2 - 4y^2 + 3z^2 + 4 = 0$ at the point (3,2,1). [Ans. 3x-8y+3z+4=0]

Problem 14: Find the angle between the normals to the surface $xy - z^2 = 0$ at the points (1,4,-2) and (-3,-3,3)

Solution : First find $\nabla \emptyset$ at the points (1,4,-2) and (-3,-3,3).

At
$$(1,4,-2)$$
, $\nabla \emptyset = 4\vec{i} + \vec{j} + 4\vec{k}$ & At $(-3,-3,3)$, $\nabla \emptyset = -3\vec{i} - 3\vec{j} - 6\vec{k}$

If θ is the angle between the normals then $\cos\theta = \frac{\left(4\vec{\imath}+\vec{\jmath}+4\vec{k}\right)\cdot\left(-3\vec{\imath}-3\vec{\jmath}-6\vec{k}\right)}{\sqrt{16+1+16}\sqrt{9+9+36}} = \frac{-13}{3\sqrt{22}}$

Problem 15: Show that the surfaces $5x^2 - 2yz - 9x = 0$ and $4x^2y + z^3 - 4 = 0$ are orthogonal at (1,-1,2).

Soln.: - Let
$$\emptyset_1 = 5x^2 - 2yz - 9x$$
 and $\emptyset_2 = 4x^2y + z^3 - 4$

$$\nabla \phi_1 = (10x - 9)\vec{i} - 2z\vec{j} - 2y\vec{k} \& \nabla \phi_2 = 8xy\vec{i} + 4x^2\vec{j} + 3z^2\vec{k} \ (verify)$$

At
$$(1,-1,2) \ \nabla \emptyset_1 = \vec{\iota} - 4\vec{\jmath} + 2\vec{k} \ \& \ \nabla \emptyset_2 = -8\vec{\iota} + 4\vec{\jmath} + 12\vec{k} \ (verify)$$

$$(\nabla \emptyset_1) \cdot (\nabla \emptyset_2) = (\vec{i} - 4\vec{j} + 2\vec{k}) \cdot (-8\vec{i} + 4\vec{j} + 12\vec{k}) = 0 \ (verify)$$

Thus the given two surfaces are orthogonal.

Problem 16: Find the angle between the normals to the intersecting surfaces $xy - z^2 - 1 = 0$ and $y^2 - 3z - 1 = 0$ at (1,1,0). Also find a unit vector along the tangent to the curve of intersection of the surfaces at (1,1,0).

Soln. : As in the previous problem find $\nabla \emptyset_1 \& \nabla \emptyset_2$ at (1,1,0)

$$\nabla \phi_1 = \vec{\imath} + \vec{\jmath} \& \nabla \phi_2 = 2\vec{\jmath} - 3\vec{k}$$

Let
$$\vec{a} = \vec{i} + \vec{j} \& \vec{b} = 2\vec{j} - 3\vec{k}$$

Let θ bet the angle between the normals to the surfaces.

$$\therefore \cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \frac{2}{\sqrt{26}}$$

Unit Vector along the tangent = $\frac{\vec{a} \times \vec{b}}{|\vec{a} \times \vec{b}|}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 1 & 0 \\ 0 & 2 & -3 \end{vmatrix} = -3\vec{i} + 3\vec{j} + 2\vec{k} \text{ and } |\vec{a} \times \vec{b}| = \sqrt{22} \text{ (Verify)}$$

Thus the unit vector along the tangent = $\frac{-3\vec{i}+3\vec{j}+2\vec{k}}{\sqrt{22}}$.

Problem 17: Find the direction in which $\emptyset = xy^2 + yz^2 + zx^2$ increases most rapidly at the point (1,2,-3).

Soln.: Find $\nabla \emptyset$ at (1,2,-3)

Direction of $\nabla(xy^2 + yz^2 + zx^2) = -2\vec{\imath} + 13\vec{\jmath} - 11\vec{k}$.

Divergence of a vector point function

If $V = V_1 \vec{\imath} + V_2 \vec{\jmath} + V_3 \vec{k}$ is a vector point function, then the scalar $\frac{\partial V_1}{\partial x} + \frac{\partial V_2}{\partial y} + \frac{\partial V_3}{\partial z}$ is called the **divergence of V** and is denoted by div V (or) $\nabla \cdot V$.

If $\nabla \cdot V = 0$ then the vector V is said to be **solenoidal**.

The summation notation for divergence is $\nabla \cdot V = \sum \vec{i} \cdot \frac{\partial V}{\partial x}$.

Curl of a vector point function

If $\mathbf{V} = V_1 \vec{\imath} + V_2 \vec{\jmath} + V_3 \vec{k}$, then the vector $\vec{\imath} \left(\frac{\partial V_3}{\partial y} - \frac{\partial V_2}{\partial z} \right) + \vec{\jmath} \left(\frac{\partial V_1}{\partial z} - \frac{\partial V_3}{\partial x} \right) + \vec{k} \left(\frac{\partial V_2}{\partial x} - \frac{\partial V_1}{\partial y} \right)$ is called the **curl of V** and is denoted by **curlV** (or) $\nabla \times V$.

Now,
$$\nabla \times V = \begin{vmatrix} \vec{t} & \vec{J} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ V_1 & V_2 & V_3 \end{vmatrix}$$

If $\nabla \times V = \mathbf{0}$ then the vector **V** is said to be **irrotational**.

Note 1: The divergence of a vector point function is a scalar and the curl of a vector point function is a vector.

Note 2 :
$$V \cdot \nabla = V \cdot \sum \vec{\iota} \frac{\partial}{\partial x}$$

Theorem 1 : If \vec{A} and \vec{B} are vector point functions, $'\emptyset'$ a scalar point function and 'k' a constant then, (i) $\nabla \cdot (\vec{A} + \vec{B}) = \nabla \cdot \vec{A} + \nabla \cdot \vec{B}$ (ii) $\nabla \cdot (k\vec{A}) = k(\nabla \cdot \vec{A})$

(iii)
$$\nabla \cdot (\phi \vec{A}) = (\nabla \phi) \cdot \vec{A} + \phi (\nabla \cdot \vec{A})$$
 (iv) $\nabla \times (\vec{A} + \vec{B}) = \nabla \times \vec{A} + \nabla \times \vec{B}$

$$(\mathbf{v}) \, \nabla \times \left(k \vec{A} \right) = k (\nabla \times \vec{A}) \, (\mathbf{v}i) \, \nabla \times \left(\emptyset \vec{A} \right) = (\nabla \emptyset) \times \vec{A} + \emptyset (\nabla \times \vec{A})$$

Proof: (i)
$$\nabla \cdot (\vec{A} + \vec{B}) = \sum \vec{i} \cdot \frac{\partial (\vec{A} + \vec{B})}{\partial x} = \sum \vec{i} \cdot (\frac{\partial \vec{A}}{\partial x} + \frac{\partial \vec{B}}{\partial x}) = \sum \vec{i} \cdot \frac{\partial \vec{A}}{\partial x} + \sum \vec{i} \cdot \frac{\partial \vec{B}}{\partial x}$$

$$=\nabla \cdot \vec{A} + \nabla \cdot \vec{B}$$

(ii)
$$\nabla \cdot (k\vec{A}) = \sum \vec{i} \cdot \frac{\partial (k\vec{A})}{\partial x} = k \sum \vec{i} \cdot \frac{\partial \vec{A}}{\partial x}$$
 [Since, k is a constant]= $k(\nabla \cdot \vec{A})$

(iii)
$$\nabla \cdot (\vec{Q}\vec{A}) = \sum \vec{i} \cdot \frac{\partial (\vec{Q}\vec{A})}{\partial x} = \sum \vec{i} \cdot [\frac{\partial \vec{Q}}{\partial x}\vec{A} + \vec{Q}\frac{\partial \vec{A}}{\partial x}] = \sum \vec{i} \cdot \frac{\partial \vec{Q}}{\partial x}\vec{A} + \sum \vec{i} \cdot \vec{Q}\frac{\partial \vec{A}}{\partial x}$$

$$= \sum \vec{i} \frac{\partial \emptyset}{\partial x} \cdot \vec{A} + \emptyset \sum \vec{i} \cdot \frac{\partial \vec{A}}{\partial x} = (\nabla \emptyset) \cdot \vec{A} + \emptyset (\nabla \cdot \vec{A})$$

(iv), (v) & (vi) are H.W.

Theorem 2 : If \vec{A} and \vec{B} are vector point functions then,

(i)
$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + (\vec{A} \cdot \nabla)\vec{B} + \vec{B} \times (\nabla \times \vec{A}) + (\vec{B} \cdot \nabla)\vec{A}$$

(ii)
$$\nabla \cdot (\vec{A} \times \vec{B}) = (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A}$$

(iii)
$$\nabla \times (\vec{A} \times \vec{B}) = \{ (\vec{B} \cdot \nabla) \vec{A} - (\nabla \cdot \vec{A}) \vec{B} \} - \{ (\vec{A} \cdot \nabla) \vec{B} - (\nabla \cdot \vec{B}) \vec{A} \}$$

Proof : (i)
$$\nabla(\vec{A} \cdot \vec{B}) = \sum \vec{i} \cdot \frac{\partial(\vec{A} \cdot \vec{B})}{\partial x} = \sum \vec{i} \left[\frac{\partial \vec{A}}{\partial x} \cdot \vec{B} + \vec{A} \cdot \frac{\partial \vec{B}}{\partial x} \right] = \sum \vec{i} \left[\frac{\partial \vec{A}}{\partial x} \cdot \vec{B} \right] + \sum \vec{i} \left[\vec{A} \cdot \frac{\partial \vec{B}}{\partial x} \right] = \sum \vec{i} \left[\vec{B} \cdot \frac{\partial \vec{A}}{\partial x} \right] + \sum \vec{i} \left[\vec{A} \cdot \frac{\partial \vec{B}}{\partial x} \right] \dots (1)$$

Now,
$$\vec{A} \times (\vec{t} \times \frac{\partial \vec{B}}{\partial x}) = (\vec{A} \cdot \frac{\partial \vec{B}}{\partial x})\vec{i} - (\vec{A} \cdot \vec{i})\frac{\partial \vec{B}}{\partial x}$$

(Using,
$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$
)

$$\vec{A} \times \left(\vec{\iota} \times \frac{\partial \vec{B}}{\partial x} \right) + (\vec{A} \cdot \vec{\iota}) \frac{\partial \vec{B}}{\partial x} = \left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x} \right) \vec{\iota}$$

Taking summation on both sides.

$$\sum [\vec{A} \times \left(\vec{\imath} \times \frac{\partial \vec{B}}{\partial x}\right) + (\vec{A} \cdot \vec{\imath}) \frac{\partial \vec{B}}{\partial x}] = \sum \left[\left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right) \vec{\imath}\right]$$

$$\sum [\vec{A} \times \left(\vec{\imath} \times \frac{\partial \vec{B}}{\partial x}\right)] + \sum \left[\left(\vec{A} \cdot \vec{\imath}\right) \frac{\partial \vec{B}}{\partial x}\right] = \sum \left[\left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right) \vec{\imath}\right]$$

$$\sum \left[\left(\vec{A} \cdot \frac{\partial \vec{B}}{\partial x}\right) \vec{\imath}\right] = \sum \left[\vec{A} \times \left(\vec{\imath} \times \frac{\partial \vec{B}}{\partial x}\right)\right] + \sum \left[\left(\vec{A} \cdot \vec{\imath}\right) \frac{\partial \vec{B}}{\partial x}\right]$$

$$= \vec{A} \times \sum \left(\vec{\imath} \times \frac{\partial \vec{B}}{\partial x}\right) + \left[\vec{A} \cdot \sum \vec{\imath} \frac{\partial}{\partial x}\right] \vec{B}$$

$$= \vec{A} \times (\nabla \times \vec{B}) + (\vec{A} \cdot \nabla)\vec{B} \quad \dots (2)$$

Interchanging \vec{A} and \vec{B} , we get

$$\sum \left[\left(\vec{B} \cdot \frac{\partial \vec{A}}{\partial x} \right) \vec{t} \right] = \vec{B} \times (\nabla \times \vec{A}) + (\vec{B} \cdot \nabla) \vec{A} \qquad (3)$$

Put (2) and (3) in (1) we get,

$$\nabla(\vec{A} \cdot \vec{B}) = \vec{A} \times (\nabla \times \vec{B}) + (\vec{A} \cdot \nabla)\vec{B} + \vec{B} \times (\nabla \times \vec{A}) + (\vec{B} \cdot \nabla)\vec{A}$$

(ii)
$$\nabla \cdot (\vec{A} \times \vec{B}) = \sum \vec{i} \cdot \frac{\partial (\vec{A} \times \vec{B})}{\partial x} = \sum \vec{i} \cdot (\frac{\partial \vec{A}}{\partial x} \times \vec{B} + \vec{A} \times \frac{\partial \vec{B}}{\partial x})$$

$$= \sum \vec{\iota} \cdot (\frac{\partial \vec{A}}{\partial x} \times \vec{B}) + \sum \vec{\iota} \cdot (\vec{A} \times \frac{\partial \vec{B}}{\partial x}) = \sum \vec{\iota} \cdot \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B}\right) - \sum \vec{\iota} \cdot (\frac{\partial \vec{B}}{\partial x} \times \vec{A})$$

 $= \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \cdot \vec{B}\right) - \sum \vec{i} \times \left(\frac{\partial \vec{B}}{\partial x} \cdot \vec{A}\right) \quad [Interchanging dot and cross]$

$$= \sum \left(\vec{\imath} \times \frac{\partial \vec{A}}{\partial x} \right) \cdot \vec{B} - \sum (\vec{\imath} \times \frac{\partial \vec{B}}{\partial x}) \cdot \vec{A} = \left(\nabla \times \vec{A} \right) \cdot \vec{B} - \left(\nabla \times \vec{B} \right) \cdot \vec{A}$$

(iii)
$$\nabla \times (\vec{A} \times \vec{B}) = \sum \vec{i} \times \frac{\partial (\vec{A} \times \vec{B})}{\partial x} = \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B} + \vec{A} \times \frac{\partial \vec{B}}{\partial x}\right)$$
$$= \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B}\right) + \sum \vec{i} \times \left(\vec{A} \times \frac{\partial \vec{B}}{\partial x}\right)$$

$$= \sum \vec{i} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B}\right) - \sum \vec{i} \times \left(\frac{\partial \vec{B}}{\partial x} \times \vec{A}\right) \quad(1)$$

Now,
$$\vec{\iota} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B}\right) = (\vec{\iota} \cdot \vec{B}) \frac{\partial \vec{A}}{\partial x} - (\vec{\iota} \cdot \frac{\partial \vec{A}}{\partial x}) \vec{B}$$

$$\sum_{\vec{l}} \vec{l} \times \left(\frac{\partial \vec{A}}{\partial x} \times \vec{B} \right) = \sum_{\vec{l}} (\vec{l} \cdot \vec{B}) \frac{\partial \vec{A}}{\partial x} - \sum_{\vec{l}} (\vec{l} \cdot \frac{\partial \vec{A}}{\partial x}) \vec{B}$$

$$= \sum \left(\overrightarrow{B} \cdot \overrightarrow{\iota}\right) \frac{\partial \overrightarrow{A}}{\partial x} - \sum \left(\overrightarrow{\iota} \cdot \frac{\partial \overrightarrow{A}}{\partial x}\right) \overrightarrow{B} = \overrightarrow{B} \cdot \sum \overrightarrow{\iota} \frac{\partial \overrightarrow{A}}{\partial x} - \sum \left(\overrightarrow{\iota} \cdot \frac{\partial \overrightarrow{A}}{\partial x}\right) \overrightarrow{B}$$

$$= (\overrightarrow{B} \cdot \sum \overrightarrow{\iota} \frac{\partial}{\partial x}) \overrightarrow{A} - \sum \left(\overrightarrow{\iota} \cdot \frac{\partial \overrightarrow{A}}{\partial x} \right) \overrightarrow{B}$$

$$= (\vec{B} \cdot \nabla)\vec{A} - (\nabla \cdot \vec{A})\vec{B} \quad ... \tag{2}$$

Interchanging
$$\vec{A} \& \vec{B}$$
 we get, $\sum \vec{i} \times \left(\frac{\partial \vec{B}}{\partial x} \times \vec{A}\right) = (\vec{A} \cdot \nabla)\vec{B} - (\nabla \cdot \vec{B})\vec{A}$ (3)

Put (2) and (3) in (1) we get the result.

Laplacian Differential operator

The operator ∇^2 defined by $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is called Laplacian differential operator.

Laplace Equation

If \emptyset is such that $\nabla^2 \emptyset = \mathbf{0}$ (i. e., $\frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} + \frac{\partial^2 \emptyset}{\partial z^2} = 0$) the \emptyset is said to satisfied Laplace equation.

Harmonic function

A single valued function f(x,y,z) is said to be a harmonic function if its second order partial derivative exists and are continuous and if the function satisfies the Laplace equation $\nabla^2 f = \mathbf{0}$.

Theorem 3 : If \emptyset is a scalar point function then,

- (i) Divergence of the gradient of \emptyset is $\nabla^2 \emptyset$ i. e., $\nabla \cdot (\nabla \emptyset) = \nabla^2 \emptyset$
- (ii) Curl of the gradient of \emptyset vanishes. (i.e.,) $\nabla \times (\nabla \emptyset) = \vec{0}$.

Proof:

(i) We have,
$$\nabla \emptyset = \vec{i} \frac{\partial \emptyset}{\partial x} + \vec{j} \frac{\partial \emptyset}{\partial y} + \vec{k} \frac{\partial \emptyset}{\partial z}$$

$$\nabla \cdot \nabla \emptyset = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot (\vec{i} \frac{\partial \emptyset}{\partial x} + \vec{j} \frac{\partial \emptyset}{\partial y} + \vec{k} \frac{\partial \emptyset}{\partial z})$$

$$= \frac{\partial^2 \emptyset}{\partial x^2} + \frac{\partial^2 \emptyset}{\partial y^2} + \frac{\partial^2 \emptyset}{\partial z^2} = \nabla^2 \emptyset$$

(ii)
$$\nabla \times (\nabla \emptyset) = \begin{vmatrix} \vec{l} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial \emptyset}{\partial x} & \frac{\partial \emptyset}{\partial y} & \frac{\partial \emptyset}{\partial z} \end{vmatrix} = 0\vec{l} + 0\vec{j} + 0\vec{k} = \vec{0} \text{ (Verify)}$$

Theorem 4: If $\vec{A} = A_1 \vec{i} + A_2 \vec{j} + A_3 \vec{k}$ where A_1, A_2, A_3 have continuous second partials, then

(i) divergence of a curl of a vector vanishes. i.e., $\nabla \cdot (\nabla \times \vec{A}) = 0$

(ii)
$$\nabla \times (\nabla \times \vec{A}) = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A}$$

Proof: (i)
$$\nabla \times \vec{A} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_1 & A_2 & A_3 \end{vmatrix}$$

$$= \vec{l} \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) - \vec{J} \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_1}{\partial z} \right) + \vec{k} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right)$$

$$\nabla \cdot \left(\nabla \times \vec{A} \right) = \left(\vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} \right) \cdot \left[\vec{i} \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) - \vec{j} \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_1}{\partial z} \right) + \vec{k} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right) \right]$$

$$= \frac{\partial^2 A_3}{\partial x \partial y} - \frac{\partial^2 A_2}{\partial x \partial z} - \frac{\partial^2 A_3}{\partial x \partial y} + \frac{\partial^2 A_1}{\partial y \partial z} + \frac{\partial^2 A_2}{\partial x \partial z} - \frac{\partial^2 A_1}{\partial y \partial z} = 0$$

ii)
$$\nabla \times \vec{A} = \vec{i} \left(\frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} \right) - \vec{j} \left(\frac{\partial A_3}{\partial x} - \frac{\partial A_1}{\partial z} \right) + \vec{k} \left(\frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \right)$$

$$\nabla \times (\nabla \times \vec{A}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial A_3}{\partial y} - \frac{\partial A_2}{\partial z} & -\left(\frac{\partial A_3}{\partial x} - \frac{\partial A_1}{\partial z}\right) & \frac{\partial A_2}{\partial x} - \frac{\partial A_1}{\partial y} \end{vmatrix}$$

$$=\vec{\iota}\left[\frac{\partial}{\partial y}\left(\frac{\partial A_2}{\partial x}-\frac{\partial A_1}{\partial y}\right)+\frac{\partial}{\partial z}\left(\frac{\partial A_3}{\partial x}-\frac{\partial A_1}{\partial z}\right)\right]-\vec{\jmath}\ldots\ldots$$

$$= \sum_{i} \vec{l} \left[\frac{\partial^{2} A_{2}}{\partial x \partial y} - \frac{\partial^{2} A_{1}}{\partial y^{2}} + \frac{\partial^{2} A_{3}}{\partial x \partial z} - \frac{\partial^{2} A_{1}}{\partial z^{2}} \right]$$

$$= \sum_{\vec{i}} \left[\frac{\partial^2 A_2}{\partial x \partial y} + \frac{\partial^2 A_3}{\partial x \partial z} - \left(\frac{\partial^2 A_1}{\partial y^2} + \frac{\partial^2 A_1}{\partial z^2} \right) \right]$$

$$= \sum_{i} \vec{i} \left[\frac{\partial^{2} A_{2}}{\partial x \partial y} + \frac{\partial^{2} A_{3}}{\partial x \partial z} + \frac{\partial^{2} A_{1}}{\partial x^{2}} - \frac{\partial^{2} A_{1}}{\partial x^{2}} - \left(\frac{\partial^{2} A_{1}}{\partial y^{2}} + \frac{\partial^{2} A_{1}}{\partial z^{2}} \right) \right]$$

(Add and subtract $\frac{\partial^2 A_1}{\partial x^2}$)

$$= \sum_{i} \vec{l} \left[\frac{\partial^{2} A_{2}}{\partial x \partial y} + \frac{\partial^{2} A_{3}}{\partial x \partial z} + \frac{\partial^{2} A_{1}}{\partial x^{2}} - \left(\frac{\partial^{2} A_{1}}{\partial x^{2}} + \frac{\partial^{2} A_{1}}{\partial y^{2}} + \frac{\partial^{2} A_{1}}{\partial z^{2}} \right) \right]$$

$$\begin{split} & = \sum \vec{\imath} \left[\frac{\partial}{\partial x} \left(\frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} + \frac{\partial A_1}{\partial x} \right) - \left(\frac{\partial^2 A_1}{\partial x^2} + \frac{\partial^2 A_1}{\partial y^2} + \frac{\partial^2 A_1}{\partial z^2} \right) \right] \\ & = \sum \vec{\imath} \frac{\partial}{\partial x} \left(\frac{\partial A_1}{\partial x} + \frac{\partial A_2}{\partial y} + \frac{\partial A_3}{\partial z} \right) - \sum \vec{\imath} \left(\frac{\partial^2 A_1}{\partial x^2} + \frac{\partial^2 A_1}{\partial y^2} + \frac{\partial^2 A_1}{\partial z^2} \right) \\ & = \sum \vec{\imath} \frac{\partial}{\partial x} \left(\nabla \cdot \vec{A} \right) - \nabla^2 \vec{A} = \nabla \left(\nabla \cdot \vec{A} \right) - \nabla^2 \vec{A}. \end{split}$$

Problem 18: Show that the vector $\vec{A} = x^2 z^2 \vec{\imath} + xyz^2 \vec{\jmath} - xz^3 \vec{k}$ is solenoidal.

Solution: (To show that $\nabla \cdot \overrightarrow{A} = 0$)

Problem 19: If the vector $3x\vec{i} + (x+y)\vec{j} - az\vec{k}$ is solenoidal, find a.

Solution: Let $\vec{A} = 3x\vec{\imath} + (x+y)\vec{\jmath} - az\vec{k}$

Given \vec{A} is solenoidal. Therefore, $\nabla \cdot \vec{A} = 0$

i.e.,
$$\left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right) \cdot \left(3x\vec{i} + (x+y)\vec{j} - \alpha z\vec{k}\right) = 0$$

i.e.,
$$\frac{\partial(3x)}{\partial x} + \frac{\partial(x+y)}{\partial y} - \frac{\partial(az)}{\partial z} = 0$$

i.e., 3+1-a=0 => a=4.

Problem 20: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$, Show that $\nabla \cdot \vec{r} = 3$.

Solution: Given $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$

$$\nabla \cdot \vec{r} = \left(\vec{i}\frac{\partial}{\partial x} + \vec{j}\frac{\partial}{\partial y} + \vec{k}\frac{\partial}{\partial z}\right) \cdot \left(x\vec{i} + y\vec{j} + z\vec{k}\right)$$
$$= \frac{\partial(x)}{\partial x} + \frac{\partial(y)}{\partial y} + \frac{\partial(z)}{\partial z} = 1 + 1 + 1 = 3$$

Problem 21: If $\vec{r} = x\vec{\iota} + y\vec{\jmath} + z\vec{k}$ and $r = |\vec{r}|$ show that $\nabla \cdot (r^n\vec{r}) = (n+3)r^n$.

Solution:
$$\nabla \cdot (r^n \vec{r}) = \nabla (r^n) \cdot \vec{r} + r^n (\nabla \cdot \vec{r})$$
(1)

$$\nabla(r^n) = \vec{\imath} \frac{\partial(r^n)}{\partial x} + \vec{\jmath} \frac{\partial(r^n)}{\partial y} + \vec{k} \frac{\partial(r^n)}{\partial z}$$

$$=\vec{\imath}nr^{n-1}\frac{\partial\mathbf{r}}{\partial x}+\vec{\jmath}nr^{n-1}\frac{\partial\mathbf{r}}{\partial y}+\vec{k}nr^{n-1}\frac{\partial\mathbf{r}}{\partial z}$$

$$= \vec{i}nr^{n-1}\frac{x}{r} + \vec{j}nr^{n-1}\frac{y}{r} + \vec{k}nr^{n-1}\frac{z}{r}$$
$$= nr^{n-2}(\vec{i}x + \vec{j}y + \vec{k}z) = nr^{n-2}\vec{r}$$

Problem 22: Show that $\nabla \cdot \left(\frac{1}{r^3}\vec{r}\right) = 0 \& \nabla \cdot \hat{r} = \frac{2}{r}$

Solution:
$$\nabla \cdot \left(\frac{1}{r^3}\vec{r}\right) = \nabla \left(\frac{1}{r^3}\right) \cdot \vec{r} + \frac{1}{r^3} (\nabla \cdot \vec{r})$$
(1)

$$\nabla \left(\frac{1}{r^3}\right) = \vec{i} \frac{\partial \left(\frac{1}{r^3}\right)}{\partial x} + \vec{j} \frac{\partial \left(\frac{1}{r^3}\right)}{\partial y} + \vec{k} \frac{\partial \left(\frac{1}{r^3}\right)}{\partial z}$$

$$= \vec{i} \left(-\frac{3}{r^4}\right) \frac{\partial \mathbf{r}}{\partial x} + \vec{j} \left(-\frac{3}{r^4}\right) \frac{\partial \mathbf{r}}{\partial y} + \vec{k} \left(-\frac{3}{r^4}\right) \frac{\partial \mathbf{r}}{\partial z}$$

$$= \vec{i} \left(-\frac{3}{r^4}\right) \frac{x}{r} + \vec{j} \left(-\frac{3}{r^4}\right) \frac{y}{r} + \vec{k} \left(-\frac{3}{r^4}\right) \frac{z}{r}$$

$$= \left(-\frac{3}{r^5}\right) (\vec{i}x + \vec{j}y + \vec{k}z) = \left(-\frac{3}{r^5}\right) \vec{r}$$

$$\therefore (1) = \nabla \cdot \left(\frac{1}{r^3} \vec{r}\right) = \left(-\frac{3}{r^5}\right) \vec{r} \cdot \vec{r} + \frac{1}{r^3} 3 = \left(-\frac{3}{r^3}\right) + \frac{1}{r^3} 3 = 0$$

$$\nabla \cdot \hat{r} = \nabla \cdot \frac{\vec{r}}{r} = \nabla \cdot \frac{1}{r} \vec{r}$$

$$\nabla \cdot \left(\frac{1}{r}\vec{r}\right) = \nabla \left(\frac{1}{r}\right) \cdot \vec{r} + \frac{1}{r}(\nabla \cdot \vec{r})$$

$$\nabla \left(\frac{1}{r}\right) = -\frac{1}{r^3}\vec{r} \ (Verify)$$

$$\nabla \cdot \left(\frac{1}{r}\vec{r}\right) = \left(-\frac{1}{r^3}\vec{r}\right) \cdot \vec{r} + \frac{1}{r}3 = -\frac{1}{r^3} \times r^2 + \frac{3}{r} = \frac{2}{r}$$

Problem 23: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ and $r = |\vec{r}|$ show that

 $\nabla \cdot (f(r)\vec{r}) = r f'(r) + 3 f(r)$. Also if $\nabla \cdot (f(r)\vec{r}) = 0$ show that $f(r) = \frac{c}{r^3}$ where c is an arbitrary constant.

Solution : $\nabla \cdot (f(r)\vec{r}) = \nabla (f(r)) \cdot \vec{r} + f(r)(\nabla \cdot \vec{r})$

$$\nabla(f(r)) = \frac{f'(r)}{r}\vec{r}$$
 (Verify)

$$\nabla \cdot (f(r)\vec{r}) = \frac{f'(r)}{r}\vec{r} \cdot \vec{r} + f(r)3 = rf'(r) + f(r)3$$

Also, given $\nabla \cdot (f(r)\vec{r}) = 0$

Thus, rf'(r) + f(r)3 = 0

$$rf'(r) = -f(r)3$$

$$\frac{f'(r)}{f(r)} = -\frac{3}{r}$$

Integrating both sides with respect to r

$$\int \frac{f'(r)}{f(r)} dr = -\int \frac{3}{r} dr$$

$$\log f(r) = -3logr + logc = -logr^3 + logc = logc - logr^3 = \log c/r^3$$

Thus, $\log f(r) = \log \frac{c}{r^3}$

Thus, $f(r) = \frac{c}{r^3}$ where c is an arbitrary constant.

Problem 24: If 'a' is a constant vector and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ then show that $\nabla \cdot \{(\vec{a} \cdot \vec{r})\vec{r}\} = 4(\vec{a} \cdot \vec{r})$.

Solution: Let $\vec{a} = a_1 \vec{\imath} + a_2 \vec{\jmath} + a_3 \vec{k}$

Given $\vec{r} = x\vec{\imath} + y\vec{\jmath} + z\vec{k}$

$$\vec{a} \cdot \vec{r} = a_1 x + a_2 y + a_3 z$$

Now,
$$\nabla \cdot \{(\vec{a} \cdot \vec{r})\vec{r}\} = \nabla \cdot \{(a_1x + a_2y + a_3z)\vec{r}\}\$$

$$\nabla(a_1x + a_2y + a_3z) = \vec{i}\frac{\partial(a_1x + a_2y + a_3z)}{\partial x} + \vec{j}\frac{\partial(a_1x + a_2y + a_3z)}{\partial y} + \vec{j}$$

$$\vec{k} \frac{\partial (a_1 x + a_2 y + a_3 z)}{\partial z}$$

$$= a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = \vec{a}$$

Also, $\nabla \cdot \vec{r} = 3$

$$\therefore (1) = \nabla \cdot \{ (\vec{a} \cdot \vec{r}) \vec{r} \} = \vec{a} \cdot \vec{r} + 3(\vec{a} \cdot \vec{r}) = 4(\vec{a} \cdot \vec{r})$$

Problem 25: Find the value of 'a' if $\vec{A} = (axy - z^2)\vec{i} + (x^2 + 2yz)\vec{j} + (y^2 - axz)\vec{k}$ is irrotational.

Solution: Given, \vec{A} is irrotational.

$$\therefore \nabla \times \vec{A} = \vec{0}$$

$$\nabla \times \vec{A} = \vec{0} = (2y - 2y)\vec{i} - (-az + 2z)\vec{j} + (2x - ax)\vec{k} = 0\vec{i} + 0\vec{j} + 0\vec{k}$$

$$\therefore 2x - ax = 0$$

$$\therefore a = 2$$

Problem 26: Show that the following vector point functions are irrotational.

(i)
$$(4xy - z^3)\vec{i} + 2x^2\vec{j} - 3xz^2\vec{k}$$

(ii)
$$(3x^2 + 2y^2 + 1)\vec{i} + (4xy - 3y^2z - 3)\vec{j} + (2 - y^3)\vec{k}$$

(iii)
$$(y^2 + 2xz^2 - 1)\vec{i} + 2xy\vec{j} + 2x^2z\vec{k}$$

Problem 27: Show that the following vector $(y^2-z^2+3yz-2x)\vec{i}+(3xz+2xy)\vec{j}+(3xy-2xz+2z)\vec{k}$ is both solenoidal and irrotational.

Problem 28: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ for all f(r), show that $\nabla \times \{f(r)\vec{r}\} = \vec{0}$.

Solution: We have, $\nabla \times (f(r)\vec{r}) = \nabla (f(r)) \times \vec{r} + f(r)(\nabla \times \vec{r})$

$$\nabla(f(r)) = \frac{f'(r)}{r}\vec{r}$$
 (Verify)

$$\nabla \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix} = \vec{0} \text{ (verify)}$$

Thus,
$$\nabla \times (f(r)\vec{r}) = \frac{f'(r)}{r}\vec{r} \times \vec{r} + f(r)(\vec{0}) = \vec{0} + \vec{0} = \vec{0}$$

Problem 29:: If $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ show that $\nabla \times (r^n\vec{r}) = \vec{0}$.

Solution: $\nabla \times (r^n \vec{r}) = \nabla (r^n) \times \vec{r} + r^n (\nabla \times \vec{r})$ (1)

$$\nabla(r^n) = \vec{i} \frac{\partial(r^n)}{\partial x} + \vec{j} \frac{\partial(r^n)}{\partial y} + \vec{k} \frac{\partial(r^n)}{\partial z}$$

$$= \vec{\imath} n r^{n-1} \frac{\partial \mathbf{r}}{\partial x} + \vec{\jmath} n r^{n-1} \frac{\partial \mathbf{r}}{\partial y} + \vec{k} n r^{n-1} \frac{\partial \mathbf{r}}{\partial z}$$

$$= \vec{i}nr^{n-1}\frac{x}{r} + \vec{j}nr^{n-1}\frac{y}{r} + \vec{k}nr^{n-1}\frac{z}{r}$$
$$= nr^{n-2}(\vec{i}x + \vec{i}y + \vec{k}z) = nr^{n-2}\vec{r}$$

$$\nabla \times \vec{r} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x & y & z \end{vmatrix} = \vec{0} \text{ (verify)}$$

$$\therefore (1) = \nabla \times (r^n \vec{r}) = \nabla (r^n) \times \vec{r} + r^n (\nabla \times \vec{r}) = n r^{n-2} \vec{r} \times \vec{r} + r^n (\vec{0}) = \vec{0}$$

Problem 30 : Show that $\nabla \times \hat{r} = \vec{0}$

(Hint : Put $\hat{r} = \frac{1}{r}\vec{r}$)

Problem 31 : If $\vec{v} = \vec{w} \times \vec{r}$ where w is a constant vector and $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Show that $\frac{1}{2} curl\vec{v} = \vec{w}$.

Solution : Let $\vec{w} = w_1 \vec{\iota} + w_2 \vec{J} + w_3 \vec{k}$

$$curl\vec{v} = \sum \vec{i} \times \frac{\partial \vec{v}}{\partial x} = \sum \vec{i} \times \frac{\partial (\vec{w} \times \vec{r})}{\partial x} = \sum \vec{i} \times \left(\vec{w} \times \frac{\partial (\vec{r})}{\partial x} \right)$$

$$= \sum \vec{\iota} \times (\vec{w} \times \vec{\iota}) \quad [\text{Since}, \frac{\partial \vec{r}}{\partial x} = \vec{\iota}]$$

$$= \sum [(\vec{\iota} \cdot \vec{\iota}) \vec{w} - (\vec{\iota} \cdot \vec{w}) \vec{\iota}] \ = \sum (\vec{\iota} \cdot \vec{\iota}) \vec{w} - \sum (\vec{\iota} \cdot \vec{w}) \vec{\iota}$$

$$= [(\vec{\imath} \cdot \vec{\imath})\vec{w} + (\vec{\jmath} \cdot \vec{\jmath})\vec{w} + (\vec{k} \cdot \vec{k})\vec{w}] - [(\vec{\imath} \cdot \vec{w})\vec{\imath} + (\vec{\jmath} \cdot \vec{w})\vec{\jmath} + (\vec{k} \cdot \vec{w})\vec{k}]$$

$$= (\vec{w} + \vec{w} + \vec{w}) - (w_1 \vec{i} + w_2 \vec{j} + w_3 \vec{k}) = 3\vec{w} - \vec{w} = 2\vec{w}$$

Thus, $curl\vec{v} = 2\vec{w}$

Hence, $\frac{1}{2} curl \vec{v} = \vec{w}$.

Problem 32: If 'a' is a constant vector, show that

- (i) $\nabla \times \{(\vec{a} \cdot \vec{r})\vec{r}\} = \vec{a} \times \vec{r}$
- (ii) $\nabla \cdot \{\vec{a} \times \vec{r}\} = 0$

Solution:

(i) Let
$$\vec{a} = a_1 \vec{\iota} + a_2 \vec{J} + a_3 \vec{k}$$

$$\nabla \times \{ (\vec{a} \cdot \vec{r}) \vec{r} \} = \{ \nabla (\vec{a} \cdot \vec{r}) \} \times \vec{r} + (\vec{a} \cdot \vec{r}) (\nabla \times \vec{r})$$

$$\vec{a} \cdot \vec{r} = a_1 x + a_2 y + a_3 z$$

$$\nabla(\vec{a} \cdot \vec{r}) = \vec{i} \frac{\partial(a_1 x + a_2 y + a_3 z)}{\partial x} + \vec{j} \frac{\partial(a_1 x + a_2 y + a_3 z)}{\partial y} + \vec{k} \frac{\partial(a_1 x + a_2 y + a_3 z)}{\partial z}$$

$$= a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = \vec{a}$$

$$\nabla \times \vec{r} = \vec{0}$$

Thus,

$$\nabla \times \{ (\vec{a} \cdot \vec{r})\vec{r} \} = \vec{a} \times \vec{r} + (\vec{a} \cdot \vec{r})\vec{0} = \vec{a} \times \vec{r}$$

(ii)
$$\vec{a} \times \vec{r} = 0$$

Problem 33 : If \vec{A} and \vec{B} are irrotational, show that $\vec{A} \times \vec{B}$ is solenoidal.

Solution : Given, \vec{A} and \vec{B} are irrotational

Therefore,

$$\nabla \times \vec{A} = \vec{0} \& \nabla \times \vec{B} = \vec{0}$$

To prove, $\vec{A} \times \vec{B}$ is solenoidal

i.e., to prove $\nabla \cdot (\vec{A} \times \vec{B}) = 0$

Now,
$$\nabla \cdot (\vec{A} \times \vec{B}) = (\nabla \times \vec{A}) \cdot \vec{B} - (\nabla \times \vec{B}) \cdot \vec{A} = 0 - 0 = 0$$

Hence,

$$\vec{A} \times \vec{B}$$

is

solenoidal.

Problem 34: Show that $\nabla^2(logr) = \frac{1}{r^2}$.

Solution:
$$\nabla^2(logr) = \frac{\partial^2}{\partial x^2}(logr) + \frac{\partial^2}{\partial y^2}(logr) + \frac{\partial^2}{\partial z^2}(logr)$$
 (1)

Now,
$$\frac{\partial^2}{\partial x^2}(logr) = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x}(logr) \right] = \frac{\partial}{\partial x} \left[\frac{1}{r} \frac{\partial r}{\partial x} \right] = \frac{\partial}{\partial x} \left[\frac{1}{r} \frac{x}{r} \right] = \frac{\partial}{\partial x} \left[\frac{x}{r^2} \right]$$

$$= -\frac{2x^2}{r^4} + \frac{1}{r^2} \quad (verify)$$

Similarly find $\frac{\partial^2}{\partial y^2}(logr) \& \frac{\partial^2}{\partial z^2}(logr)$.

Then Sub. all the values in (1),

Problem 35: Show that $\nabla^2(r^n) = n(n+1)r^{n-2}$.

Solution:
$$\nabla^2(r^n) = \frac{\partial^2}{\partial x^2}(r^n) + \frac{\partial^2}{\partial y^2}(r^n) + \frac{\partial^2}{\partial z^2}(r^n)$$
(1)

$$\frac{\partial^2}{\partial x^2}(r^n) = nx^2(n-2)r^{n-4} + nr^{n-2}$$
 (verify)

Similarly find $\frac{\partial^2}{\partial y^2}(r^n) \& \frac{\partial^2}{\partial z^2}(r^n)$

Problem 36 : If \emptyset is a harmonic function then show that $\nabla \emptyset$ is solenoidal.

Solution : Given, \emptyset is a harmonic function.

$$\therefore$$
 We have, $\nabla^2 \emptyset = 0$

To prove, $\nabla \emptyset$ is solenoidal

i.e., to prove, $\nabla \cdot \nabla \emptyset = 0$

$$\nabla \cdot \nabla \emptyset = \nabla^2 \emptyset = 0$$

Hence, $\nabla \emptyset$ is solenoidal.

Problem 37: Show that $\nabla \cdot (\emptyset \nabla \psi - \psi \nabla \emptyset) = \emptyset \nabla^2 \psi - \psi \nabla^2 \emptyset$.

Solution : LHS=
$$\nabla \cdot (\emptyset \nabla \psi - \psi \nabla \emptyset) = \nabla \cdot (\emptyset \nabla \psi) - \nabla \cdot (\psi \nabla \emptyset)$$
(1)

Consider, $\nabla \cdot (\emptyset \nabla \psi)$

Let $\vec{A} = \nabla \psi$

Now,
$$\nabla \cdot (\vec{\varphi} \vec{A}) = \nabla \vec{\varphi} \cdot \vec{A} + \vec{\varphi} (\nabla \cdot \vec{A}) = \nabla \vec{\varphi} \cdot \nabla \psi + \vec{\varphi} (\nabla \cdot \nabla \psi) = \nabla \vec{\varphi} \cdot \nabla \psi + \vec{\varphi} (\nabla^2 \psi)$$

Now, consider $\nabla \cdot (\psi \nabla \emptyset)$

Let $\vec{B} = \nabla \emptyset$

$$\nabla \cdot (\psi \vec{B}) = \nabla \psi \cdot \vec{B} + \psi (\nabla \cdot \vec{B}) = \nabla \psi \cdot \nabla \phi + \psi (\nabla \cdot \nabla \phi) = \nabla \psi \cdot \nabla \phi + \psi (\nabla^2 \phi)$$

$$(1) = >, \nabla \cdot (\emptyset \nabla \psi - \psi \nabla \emptyset) = \nabla \emptyset \cdot \nabla \psi + \emptyset (\nabla^2 \psi) - \nabla \psi \cdot \nabla \emptyset - \psi (\nabla^2 \emptyset)$$

Thus, $\nabla \cdot (\emptyset \nabla \psi - \psi \nabla \emptyset) = \emptyset \nabla^2 \psi - \psi \nabla^2 \emptyset$.

Problem 38: Show that $(\vec{V} \times \nabla) \times \vec{r} = -2\vec{V}$

Solution : Let $\vec{V} = V_1 \vec{i} + V_2 \vec{j} + V_3 \vec{k} \& \vec{r} = x \vec{i} + y \vec{j} + z \vec{k}$

First find $\vec{V} \times \nabla$ and then find $(\vec{V} \times \nabla) \times \vec{r}$

Problem 39: Show that $(\vec{V} \cdot \nabla)\vec{V} = \frac{1}{2}\nabla V^2 - \vec{V} \times (\nabla \times \vec{V})$.

UNIT - II

EVALUATION OF DOUBLE AND TRIPLE INTEGRALS

Integration may be consider either as the inverse of differentiation or as the process of summation.

In calculus of a single variable the definite integral

$$\int_{a}^{b} f(x)dx$$

for $f(x) \ge 0$ is the area under the curve f(x) from x=a to x=b. For general f(x) the definite integral is equal to the area above the x-axis minus the area below the x-axis.

The multiple integral is a definite integral of a function of more than one real variable, for instance f(x,y) or f(x,y,z). Integrals of a function of two variables over a region in R^2 are called double integrals and integrals of a function of three variables over a region in R^3 are called triple integrals.

The definite integral can be extended to functions of more than one variable. Consider a function of 2 variables z=f(x,y). The definite integral is denoted by

$$\iint_{R} f(x,y) dA$$

where R is the region of integration in the xy-plane.

2.1 Evaluation of the Double integral

Given a double integral we can integrate the integrand f(x,y) with respect to x treating y as a constant and then integrating the resulting function with respect to y or vise versa.

Problems:

Problem 1: Evaluate $\int_0^1 \int_0^2 xy dx dy$

Solution: Let
$$I = \int_{y=0}^{1} \int_{x=0}^{2} xy dx dy = \int_{y=0}^{1} \left[\frac{x^2}{2} \right]_{0}^{2} y dy = \int_{y=0}^{1} \left[\frac{4}{2} - 0 \right] y dy$$

$$=2\int_{y=0}^{1} y dy = 2\left[\frac{y^{2}}{2}\right]_{0}^{1} = 2\left[\frac{1}{2} - 0\right] = 1$$

Problem 2 : Evaluate $\int_0^a \int_0^b (x^2 + y^2) dx dy$

Solution : Let $I = \int_{y=0}^{a} \int_{x=0}^{b} (x^2 + y^2) dx dy$

$$= \int_{y=0}^{a} \left[\frac{x^3}{3} + y^2 x \right]_0^b dy$$

$$= \int_{y=0}^{a} \left[\frac{b^3}{3} + y^2 b - 0 \right] dy$$

$$= \left[\frac{b^3}{3} y + b \frac{y^3}{3} \right]_0^a$$

$$= \left[\frac{b^3}{3} a + b \frac{a^3}{3} - 0 \right]$$

$$= \frac{ab}{3} (a^2 + b^2)$$

Problem 3 : Evaluate $\int_0^1 \int_0^2 (x+y) dx dy$ [Ans. : 3]

Problem 4: Evaluate $\int_0^1 \int_0^{1-y} x dx dy$

Solution:

Let
$$I = \int_{y=0}^{1} \int_{x=0}^{1-y} x dx dy = \int_{y=0}^{1} \left[\frac{x^2}{2} \right]_{0}^{1-y} dy = \int_{y=0}^{1} \left[\frac{(1-y)^2}{2} - 0 \right] dy$$

= $1/2 \int_{y=0}^{1} \left[1 + y^2 - 2y \right] dy = \frac{1}{2} \left[y + \frac{y^3}{3} - 2 \frac{y^2}{2} \right]_{0}^{1} = \frac{1}{2} \left[1 + \frac{1}{3} - 1 - 0 \right] = \frac{1}{6}$

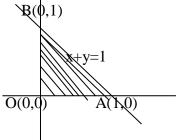
Problem 5 : Evaluate $\int_0^{4a} \int_{\frac{x^2}{4a}}^x x^2 y dx dy \left[Ans.: \frac{1024a^5}{35} \right]$

Problem 6 : Evaluate $\int_0^a \int_{x^2}^{2x} (2x + 3y) dy dx \ [Ans.: \frac{136}{15}]$

Problem 7: Evaluate $\int_0^a \int_0^{\sqrt{a^2-x^2}} y^3 dy dx$ [Ans.: $\frac{2}{15}a^5$]

Problem 8 : Evaluate $\iint xydxdy$ over the region bounded by the lines x=0; y=0; x+y=1.

Solution: x=0 is the y-axis, y=0 is the x-axis and x+y=1 is the line making intercepts with the x and y axis.



We have x + y = 1 => y = 1 - x

Keeping x as constant and y varies from 0 to 1-x.

x varies from 0 to 1.

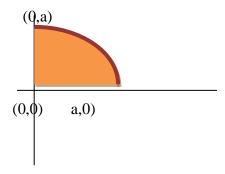
Thus,
$$\iint xy dx dy = \int_{x=0}^{1} \int_{y=0}^{1-x} xy dy dx = \int_{0}^{1} x \left[\frac{y^{2}}{2} \right]_{0}^{1-x} dx = \int_{0}^{1} x \left[\frac{(1-x)^{2}}{2} - 0 \right] dx$$

$$= \frac{1}{2} \int_0^1 x (1 + x^2 - 2x) dx = \frac{1}{2} \int_0^1 (x + x^3 - 2x^2) dx$$

$$= \frac{1}{2} \left[\frac{x^2}{2} + \frac{x^4}{4} - 2 \frac{x^3}{3} \right]_0^1 = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{4} - \frac{2}{3} - 0 \right] = \frac{1}{2} \left[\frac{6 + 3 - 8}{12} \right] = \frac{1}{2} \times \frac{1}{12} = \frac{1}{24}.$$

Problem 9: Evaluate $\iint xydxdy$ taken over the <u>positive quadrant</u> of the circle $x^2 + y^2 = a^2$.

Solution:



Here x varies from 0 to a

y varies from 0 to $\sqrt{a^2 - x^2}$.

$$\iint xydxdy = \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^2 - x^2}} xydydx$$

$$=\int_{0}^{a}x\left[\frac{y^{2}}{2}\right]_{0}^{\sqrt{a^{2}-x^{2}}}dx$$

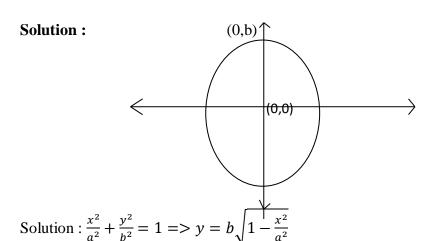
$$= \int_{0}^{a} x \left[\frac{(\sqrt{a^{2} - x^{2}})^{2}}{2} - 0 \right] dx$$

$$= \int_{0}^{a} x \left[\frac{a^{2} - x^{2}}{2} \right] dx = \frac{1}{2} \int_{0}^{a} (a^{2}x - x^{3}) dx$$

$$= \frac{1}{2} \left[a^{2} \frac{x^{2}}{2} - \frac{x^{4}}{4} \right]^{a} = \frac{1}{2} \left[\frac{a^{4}}{2} - \frac{a^{4}}{4} - 0 \right] = \frac{1}{2} \left[\frac{2a^{4} - a^{4}}{4} \right] = \frac{a^{4}}{8}.$$

Problem 10: Evaluate $\iint (x^2 + y^2) dx dy$ over the region for which x,y are each greater than or equal to 0 and $x + y \le 1$. (Ans. 1/6)

Problem 11: Find the value of $\iint xy \, dxdy$ taken over the positive quadrant of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.



x varies from 0 to a & y varies from 0 to $b\sqrt{1-\frac{x^2}{a^2}}$

Thus,
$$\iint xy \, dx dy = \int_{x=0}^{a} \int_{y=0}^{b\sqrt{1-\frac{x^2}{a^2}}} xy \, dy \, dx = \frac{a^2b^2}{8}$$
 (verify).

2.2 Changing the order of integration

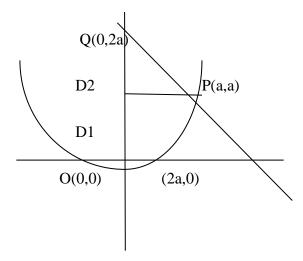
For a given integral in a region, change of order changes the limits of x and y.

Problem 12: Change the order of integration in the integral $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dx dy$ and evaluate it.

Solution: In the given integral y varies from $\frac{x^2}{a}$ to 2a-x and x varies from 0 to a.

So, we have
$$y = \frac{x^2}{a} = x^2 = ay \&$$

$$y=2a-x=> x+y=2a$$



Here the region of integration is OPQ.

In changing the order of integration, we integrate first with respect to x keeping y as constant.

Here the region is divided into 2 parts D1 and D2.

Therefore,
$$\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dx dy = \iint_{D_1} xy dx dy + \iint_{D_2} xy dx dy$$
....(1)

Consider the region D1.

y varies from 0 to a and x varies from 0 to \sqrt{ay} .

$$\iint_{D1} xy dx dy = \int_{y=0}^{a} \int_{x=0}^{\sqrt{ay}} xy \, dx dy = \frac{a^4}{6}. (verify)$$

Consider D2.

y varies from a to 2a and x varies from 0 to 2a-y

$$\iint_{D2} xy dx dy = \int_{y=a}^{2a} \int_{x=0}^{2a-y} xy \, dx dy = \frac{5}{24} a^4.$$

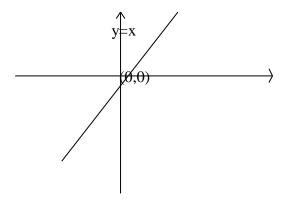
Thus (1)=>
$$\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy dx dy = \frac{a^4}{6} + \frac{5}{24} a^4 = \frac{3}{8} a^4$$
.

Problem 13: By changing the order of integration evaluate $\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} dx dy$.

Solution:

Here x varies from 0 to ∞ and y varies from x to ∞ .

The regions are x=0; $x=\infty$; y=x; $y=\infty$.



After changing the order of integration y varies for 0 to ∞ and x varies from 0 to y.

$$\int_{x=0}^{\infty} \int_{y=x}^{\infty} \frac{e^{-y}}{y} dx dy = \int_{y=0}^{\infty} \int_{x=0}^{y} \frac{e^{-y}}{y} dx dy$$

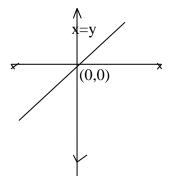
$$=\int\limits_{y=0}^{\infty}\frac{e^{-y}}{y}[x]_{0}^{y}dy$$

$$= \left[\frac{e^{-y}}{-1} \right]_0^{\infty} = -[e^{-\infty} - e^0] = 1$$

Problem 14 : Changing the order of integration evaluate $\int_0^a \int_y^a \frac{x}{x^2+y^2} dx dy$.

Solution: Here x varies from y to a and y varies from 0 to a.

The regions are x=y, x=a, y=0, y=a.



By changing the order of integration, x varies from 0 to a & y varies from 0 to x.

$$\therefore \int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy = \int_{x=0}^{a} \int_{y=0}^{x} \frac{x}{x^{2} + y^{2}} dy dx$$

$$= \int_{x=0}^{a} x \left[\frac{1}{x} tan^{-1} \left(\frac{y}{x} \right) \right]_{0}^{x} dx$$

$$= \int_{x=0}^{a} \frac{x1}{x} \left(tan^{-1} \left(\frac{x}{x} \right) - tan^{-1}(0) \right) dx$$

$$= \int_{x=0}^{a} (tan^{-1}(1) - tan^{-1}(0)) dx$$

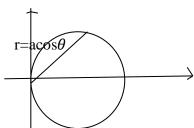
$$= \int_{x=0}^{a} \frac{\pi}{4} dx = \frac{\pi}{4} [x]_{0}^{a} = \frac{\pi a}{4}.$$

2.3 Double integral in polar co-ordinates

The double integral in Cartesian form $\iint_R f(x,y) dx dy$ transforms into $\iint_R f(rcos\theta, rsin\theta) r dr d\theta$.

Problem 15: Evaluate $\iint r\sqrt{a^2-r^2}drd\theta$ over the upper half of the circle $r=acos\theta$.

Solution:



Here r varies from 0 to $a\cos\theta$ and θ varies from 0 to $\pi/2$.

$$\therefore \iint\limits_{R} r\sqrt{a^2 - r^2} dr d\theta = \int\limits_{\theta = 0}^{\pi/2} \int\limits_{r=0}^{a\cos\theta} r\sqrt{a^2 - r^2} dr d\theta$$

$$= \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{a\cos\theta} \sqrt{a^2 - r^2} \left(-\frac{d(a^2 - r^2)}{2} \right) d\theta \qquad [Since, d(a^2 - r^2) = -2rdr = >$$

$$\therefore rdr = -\frac{d(a^2 - r^2)}{2}$$

$$= \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{a\cos\theta} (a^2 - r^2)^{1/2} \left(-\frac{d(a^2 - r^2)}{2} \right) d\theta$$

$$= -\frac{1}{2} \int_{\theta=0}^{\frac{\pi}{2}} \int_{r=0}^{a\cos\theta} (a^2 - r^2)^{1/2} d(a^2 - r^2) d\theta$$

$$= -\frac{1}{2} \int_{\theta=0}^{\frac{\pi}{2}} \left[\frac{(a^2 - r^2)^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} \right]_0^{a\cos\theta} d\theta$$

$$= -\frac{1}{2} \int_{\theta=0}^{\frac{\pi}{2}} \left[\frac{(a^2 - r^2)^{\frac{3}{2}}}{\frac{3}{2}} \right]_{0}^{a\cos\theta} d\theta$$

$$= -\frac{1}{2} \int_{\theta=0}^{\frac{\pi}{2}} \left[\frac{\left[a^2 - (a\cos\theta)^2\right]^{\frac{3}{2}} - \left[a^2 - 0\right]^{\frac{3}{2}}}{\frac{3}{2}} \right] \ d\theta$$

$$= -\frac{1}{2} \times \frac{2}{3} \int_{\theta=0}^{\frac{\pi}{2}} ([a^2 - a^2 \cos^2 \theta]^{\frac{3}{2}} - [a^2]^{\frac{3}{2}}) d\theta$$

$$= -\frac{1}{3} \int_{\theta=0}^{\frac{\pi}{2}} \{ [a^2(1-\cos^2\theta)]^{\frac{3}{2}} - [a^2]^{\frac{3}{2}} \} d\theta$$

$$= -\frac{1}{3} \int_{\theta=0}^{\frac{\pi}{2}} \{ [a^2]^{\frac{3}{2}} (\sin^2 \theta)^{\frac{3}{2}} - a^3 \} d\theta$$

$$= -\frac{1}{3} \int_{\theta=0}^{\frac{\pi}{2}} \{a^3 \sin^3 \theta - a^3\} d\theta$$

$$= -\frac{1}{3} \left[\int_{\theta=0}^{\frac{\pi}{2}} a^3 \sin^3\theta \ d\theta - \int_{\theta=0}^{\frac{\pi}{2}} a^3 \ d\theta \right]$$

$$= -\frac{1}{3} \left[a^3 \left[\frac{2}{3} \right] - a^3 [\theta]_0^{\pi/2} \right]$$

$$=\frac{3\pi-4}{18}a^3 \ (verify)$$

Problem 16: By transforming into polar co-ordinates evaluate $\iint \frac{x^2y^2}{x^2+y^2} dxdy$ over the annular region between the circle $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ (b>a).

Solution : Put $x = rcos\theta$; $y = rsin\theta$ and $dxdy = rdrd\theta$

r varies from a to b and θ varies from 0 to 2π .

$$\iint \frac{x^{2}y^{2}}{x^{2} + y^{2}} dxdy = \int_{\theta=0}^{2\pi} \int_{r=a}^{b} \frac{r^{2}cos^{2}\theta r^{2}sin^{2}\theta}{r^{2}cos^{2}\theta + r^{2}sin^{2}\theta} r dr d\theta$$

$$= \int_{\theta=0}^{2\pi} \int_{r=a}^{b} \frac{r^{5}cos^{2}\theta sin^{2}\theta}{r^{2}(cos^{2}\theta + sin^{2}\theta)} dr d\theta$$

$$= \int_{\theta=0}^{2\pi} \int_{r=a}^{b} r^{3}cos^{2}\theta sin^{2}\theta dr d\theta$$

$$= \int_{\theta=0}^{2\pi} \left[\frac{r^{4}}{4}\right]_{a}^{b} cos^{2}\theta sin^{2}\theta d\theta$$

$$= \frac{1}{4} \int_{\theta=0}^{2\pi} [b^{4} - a^{4}]cos^{2}\theta sin^{2}\theta d\theta$$

$$= \frac{[b^{4} - a^{4}]}{4} \int_{\theta=0}^{2\pi} cos^{2}\theta (1 - cos^{2}\theta) d\theta$$

$$= \frac{[b^{4} - a^{4}]}{4} \int_{\theta=0}^{2\pi} (cos^{2}\theta - cos^{4}\theta) d\theta$$

$$= \frac{[b^{4} - a^{4}]}{4} \left[\int_{\theta=0}^{2\pi} cos^{2}\theta d\theta - \int_{\theta=0}^{2\pi} cos^{4}\theta d\theta\right]$$

$$= \frac{4[b^{4} - a^{4}]}{4} \left[\int_{\theta=0}^{\pi/2} cos^{2}\theta d\theta - \int_{\theta=0}^{\pi/2} cos^{4}\theta d\theta\right]$$

$$= [b^4 - a^4] \left[\frac{1}{2} \frac{\pi}{2} - \frac{3}{4} \frac{1}{2} \frac{\pi}{2} \right]$$
$$= [b^4 - a^4] \left[\frac{4\pi - 3\pi}{16} \right]$$
$$= [b^4 - a^4] \left[\frac{\pi}{16} \right]$$

Problem 17: By changing into polar co-ordinates evaluate the integral $\int_0^{2a} \int_0^{\sqrt{2ax-x^2}} (x^2 + y^2) dx dy$.

Solution: Here x=0, x=2a, y=0, y=
$$\sqrt{2ax-x^2} => y^2 = 2ax-x^2$$

$$i.e., x^2 + y^2 = 2ax$$

Put $x = rcos\theta$; $y = rsin\theta$ and $dxdy = rdrd\theta$

$$r^2 cos^2 \theta + r^2 sin^2 \theta = 2arcos \theta$$

$$i.e., r^2 = 2arcos\theta => r = 2acos\theta$$

r varies from 0 to $2a\cos\theta \& \theta$ varies from 0 to $\pi/2$.

$$\int_{0}^{2a} \int_{0}^{\sqrt{2ax-x^{2}}} (x^{2} + y^{2}) dx dy = \int_{\theta=0}^{\pi/2} \int_{r=0}^{2a\cos\theta} (r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta) r dr d\theta$$

$$= \int_{\theta=0}^{\pi/2} \int_{r=0}^{2a\cos\theta} r^{2} r dr d\theta = \int_{\theta=0}^{\pi/2} \int_{r=0}^{2a\cos\theta} r^{3} dr d\theta$$

$$= \int_{\theta=0}^{\pi/2} \int_{r=0}^{2a\cos\theta} r^{3} dr d\theta = \int_{\theta=0}^{\pi/2} \left[\frac{r^{4}}{4} \right]_{0}^{2a\cos\theta} d\theta$$

$$= \int_{\theta=0}^{\pi/2} \left[\frac{(2a\cos\theta)^{4} - 0}{4} \right] d\theta$$

$$= \int_{\theta=0}^{\pi/2} \left[\frac{16a^{4}\cos^{4}\theta}{4} \right] d\theta = 4a^{4} \int_{0}^{\pi/2} \cos^{4}\theta d\theta$$

$$= 4a^{4} \frac{3}{4} \frac{1}{2} \frac{\pi}{2} = \frac{3\pi a^{4}}{4}$$

2.4 Triple Integrals

The triple integral is defined in a manner similar to that of the double integral, if f(x,y,z) is continuous and single valued function of x, y and z over the region of space R enclosed by the surface, then

$$\iiint_V f(x,y,z)dV = \iiint f(x,y,z)dxdydz.$$

Notes : (1) $\iint_R dxdy$ represents the area of the region R.

(2) $\iiint_D dxdydz$ represents the volume of the region D.

Problem 18: Evaluate $\int_0^2 \int_1^3 \int_1^2 xy^2 z dz dy dx$

Solution:
$$\int_{x=0}^{2} \int_{y=1}^{3} \int_{z=1}^{2} xy^2 z dz dy dx = \int_{x=0}^{2} \int_{y=1}^{3} xy^2 \left[\frac{z^2}{2} \right]_{1}^{2} dy dx$$

$$= \int_{x=0}^{2} \int_{y=1}^{3} xy^{2} \left[\frac{4}{2} - \frac{1}{2} \right] dy dx$$

$$= \frac{3}{2} \int_{x=0}^{2} x \left[\frac{y^3}{3} \right]_{1}^{3} dx$$

$$= \frac{3}{2} \int_{0.007}^{2} x \left[\frac{27}{3} - \frac{1}{3} \right] dx$$

$$= \frac{3}{2} \times \frac{26}{3} \int_{x=0}^{2} x \, dx$$

$$= 13 \left[\frac{x^2}{2} \right]_0^2 = 13 \times \frac{4}{2} = 26.$$

Problem 19: Evaluate $I = \int_0^{loga} \int_0^x \int_0^{x+y} e^{x+y+z} dx dy dz$.

Solution : $I = \int_{x=0}^{loga} \int_{y=0}^{x} \int_{z=0}^{x+y} e^{x+y+z} dz dy dx = \int_{0}^{loga} \int_{0}^{x} [e^{x+y+z}]_{0}^{x+y} dy dx$

$$= \int_{0}^{\log a} \int_{0}^{x} [e^{x+y+x+y} - e^{x+y+0}] dy dx$$

$$= \int_{0}^{\log a} \int_{0}^{x} \left[e^{2(x+y)} - e^{x+y}\right] dy dx$$

$$= \int_{0}^{\log a} \left[\frac{e^{2(x+y)}}{2} - e^{(x+y)}\right]_{0}^{x} dx$$

$$= \int_{0}^{\log a} \left\{\left[\frac{e^{2(x+x)}}{2} - e^{(x+x)}\right] - \left[\frac{e^{2(x+0)}}{2} - e^{(x+0)}\right]\right\} dx$$

$$= \int_{0}^{\log a} \left\{\frac{e^{4x}}{2} - e^{2x} - \frac{e^{2x}}{2} + e^{x}\right\} dx$$

$$= \int_{0}^{\log a} \left\{\frac{e^{4x}}{2} - 3\frac{e^{2x}}{2} + e^{x}\right\} dx$$

$$= \left[\frac{e^{4x}}{8} - 3\frac{e^{2x}}{4} + e^{x}\right]_{0}^{\log a}$$

$$= \left[\frac{e^{4\log a}}{8} - 3\frac{e^{2\log a}}{4} + e^{\log a}\right] - \left[\frac{e^{0}}{8} - 3\frac{e^{0}}{4} + e^{0}\right]$$

$$= \left[\frac{e^{\log a^{4}}}{8} - 3\frac{e^{\log a^{2}}}{4} + e^{\log a}\right] - \left[\frac{1}{8} - 3\frac{1}{4} + 1\right]$$

$$= \frac{a^{4}}{8} - \frac{3a^{2}}{4} + a - \left[\frac{1 - 6 + 8}{8}\right]$$

$$= \frac{a^{4} - 6a^{2} + 8a}{8} - \frac{3}{8}$$

Problem 20: Evaluate $\iiint xyzdxdydz$ taken through the <u>positive octant</u> of the sphere $x^2 + y^2 + z^2 = a^2$.

Solution: Put y=z=0 : $x^2=a^2=>x=\pm a$

Put z=0 :
$$x^2 + y^2 = a^2 => y^2 = a^2 - x^2 => y = \pm \sqrt{a^2 - x^2}$$

$$x^2 + y^2 + z^2 = a^2 => z = \pm \sqrt{a^2 - x^2 - y^2}$$

$$\iiint xyz dx dy dz = \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^2 - x^2}} \int_{z=0}^{\sqrt{a^2 - x^2 - y^2}} xyz dz dy dx$$

$$= \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^2 - x^2}} \left[\frac{z^2}{2} \right]_{0}^{\sqrt{a^2 - x^2 - y^2}} xy dy dx$$

$$= \frac{1}{2} \int_{x=0}^{a} \int_{y=0}^{\sqrt{a^2 - x^2}} xy (a^2 - x^2 - y^2) dy dx$$

$$= \frac{a^6}{48} \text{ (verify)}$$

Problem 21: Evaluate $\iiint \frac{dxdydz}{(x+y+z+1)^3}$ taken over the volume bounded by the planes x=0; y=0; z=0; x+y+z=1.

Solution: Here x varies from 0 to 1

y varies from 0 to 1-x and z varies from 0 to 1-x-y.

$$\iiint \frac{dxdydz}{(x+y+z+1)^3} = \int_{x=0}^{1} \int_{y=0}^{1-x} \int_{z=0}^{1-x-1-x-y} (x+y+z+1)^{-3} dz dy dx$$

$$= \int_{x=0}^{1} \int_{y=0}^{1-x} \left[\frac{(x+y+z+1)^{-3+1}}{-3+1} \right]_{0}^{1-x-y} dy dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \int_{y=0}^{1-x} \left[(x+y+z+1)^{-2} \right]_{0}^{1-x-y} dy dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \int_{y=0}^{1-x} \left[(x+y+1-x-y+1)^{-2} - (x+y+0+1)^{-2} \right] dy dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \int_{y=0}^{1-x} \left[(2)^{-2} - (x+y+1)^{-2+1} \right] dy dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left[\frac{1}{4} y - \frac{(x+y+1)^{-2+1}}{-2+1} \right]_{0}^{1-x} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left[\frac{1}{4} y - \frac{(x+y+1)^{-1}}{-1} \right]_{0}^{1-x} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left[\frac{1}{4} y + (x+y+1)^{-1} \right]_{0}^{1-x} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left\{ \left[\frac{1}{4} (1-x) + (x+1-x+1)^{-1} \right] - \left[0 + (x+0+1)^{-1} \right] \right\} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left\{ \left[\frac{1}{4} (1-x) + (2)^{-1} \right] - \left[(x+1)^{-1} \right] \right\} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left\{ \left[\frac{1}{4} (1-x) + (2)^{-1} \right] - \left[(x+1)^{-1} \right] \right\} dx$$

$$= -\frac{1}{2} \int_{x=0}^{1} \left\{ \frac{1}{4} - \frac{1}{4} x + \frac{1}{2} - \frac{1}{(x+1)} \right\} dx$$

$$= -\frac{1}{2} \left[\frac{3}{4} - \frac{1}{4} x - \frac{1}{4} x - \frac{1}{(x+1)} \right] dx$$

$$= -\frac{1}{2} \left\{ \left[\frac{3}{4} - \frac{1}{4} \frac{1}{2} - \log(x+1) \right] - \left[\frac{3}{4} 0 - \frac{1}{4} \frac{0}{2} - \log(0+1) \right] \right\}$$

$$= -\frac{1}{2} \left\{ \left[\frac{3}{4} - \frac{1}{8} - \log 2 \right] - \left[-\log(1) \right] \right\}$$

$$= -\frac{1}{2} \left\{ \left[\frac{6}{8} - \log 2 \right] + 0 \right\}$$

$$= -\frac{1}{2} \left[\frac{5}{9} - \log 2 \right] = \frac{1}{2} \log 2 - \frac{5}{16}$$

UNIT III

VECTOR INTEGRATION – LINE, SURFACE AND VOLUME INTEGRALS

3.1 LINE INTEGRALS

Another way of generalising the Riemann integral $\int_a^b f(x)dx$ is by placing the interval [a, b] by a curve in R^3 . In this generalization the integrand is a vector valued function $f = f_1 \vec{i} + f_2 \vec{j} + f_3 \vec{k}$.

Definition:

Let C be a curve in R^3 described by a continuous vector valued function $r = r(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k}$ where $a \le t \le b$.

Let $f = f_1(x, y, z)\vec{i} + f_2(x, y, z)\vec{j} + f_3(x, y, z)\vec{k}$ be a continuous function defined in some region which contains the curve C. The **line integral of f over C** denoted by $\int_C f dr$ is defined by

$$\int_{C} f \cdot dr = \int_{a}^{b} [f_{1}[x(t), y(t), z(t)]x'(t) + f_{2}[x(t), y(t), z(t)]y'(t) + f_{3}[x(t), y(t), z(t)]z'(t)]dt.$$

Solved Problems

Problem 1: Evaluate $\int_C f \cdot dr$ where $f = (x^2 + y^2)\vec{i} + (x^2 - y^2)\vec{j}$ and C is the curve $y = x^2$ joining (0,0) and (1,1).

Solution : The parametric equation of the curve can be taken as $x = t, y = t^2$, $0 \le t \le 1$.

$$\int_{C} f \cdot dr = \int_{0}^{1} [(t^{2} + t^{4})1 + (t^{2} - t^{4})2t]dt = \int_{0}^{1} [t^{2} + t^{4} + 2t^{3} - 2t^{5}]dt$$
$$= \left[\frac{1}{3}t^{3} + \frac{t^{5}}{5} + \frac{2t^{4}}{4} - \frac{2t^{6}}{6}\right]_{0}^{1} = \frac{1}{3} + \frac{1}{5} + \frac{1}{2} - \frac{1}{3} = \frac{2+5}{10} = \frac{7}{10}.$$

Problem 2: If $f = x^2i - xyj$ and C is the straight line joining the points (0,0) and (1,1) find $\int_C f \cdot dr$.

Solution : The equation of the given line is y=x and its parametric equation can be taken as x=t, y=t where $0 \le t \le 1$.

$$\therefore \int_C f \cdot dr = \int_0^1 (t^2 - t^2) dt = 0.$$

Problem 3: Evaluate $\int_C f \cdot dr$ where $f = (x^2 + y^2)i - 2xyj$ and the curve C is the rectangle in the x-y plane bounded by y = 0, y = b, x = 0, x = a.

Solution: Let O=(0,0), A=(a,0), B=(a,b) and C=(0,b) be the vertices of the given rectangle.

$$\therefore \int_{C} f \cdot dr = \int_{OA} f \cdot dr + \int_{AB} f \cdot dr + \int_{BC} f \cdot dr + \int_{CO} f \cdot dr$$

Now the parametric equation of OA can be taken as x = t, y = 0 where $0 \le t \le a$.

$$\therefore \int_{OA} f \cdot dr = \int_{0}^{a} t^{2} dt = \frac{a^{3}}{3}.$$

Now the parametric equation of AB can be taken as x = a, y = t where $0 \le t \le b$.

$$\therefore \int_{AB} f \cdot dr = \int_{0}^{b} -2atdt = -ab^{2}.$$

Now the parametric equation of BC can be taken as x = t, y = b where $0 \le t \le a$.

$$\therefore \int_{BC} f \cdot dr = \int_{0}^{a} (t^{2} + b^{2}) dt = -\left(\frac{a^{3}}{3} + ab^{2}\right).$$

Now the parametric equation of CO can be taken as x = 0, y = t where $0 \le t \le b$.

$$\therefore \int_{CO} f \cdot dr = -\int_{0}^{b} 0 dt = 0.$$

$$\therefore \int_{C} f \cdot dr = \frac{a^{3}}{3} - ab^{2} - \left(\frac{a^{3}}{3} + ab^{2}\right) + 0 = -2ab^{2}.$$

Problem 4: If f = (2y + 3)i + xzj + (yz - x)k evaluate $\int_C f \cdot dr$ along the following paths C. (i) $x = 2t^2$; y = t; $z = t^3$ from t = 0 to t = 1.

(ii) The polygonal path P consisting of the three line segments AB, BC and CD where A=(0,0,0), B=(0,0,1), C=(0,1,1) and D=(2,1,1).

(iii) The straight line joining (0,0,0) and (2,1,1).

Solution : (i)
$$\int_C f \cdot dr = \int_0^1 [(2t+3)4t + 2t^5 + (t^4 - 2t^2)3t^2] dt$$

$$= \left[\frac{8}{3}t^3 + 6t^2 + \frac{1}{3}t^6 + \frac{3}{7}t^7 - \frac{6}{5}t^5 \right]_0^1 = \frac{8}{3} + 6 + \frac{1}{3} + \frac{3}{7} + \frac{6}{5} = \frac{288}{85}.$$

(ii)
$$\int_{P} f \cdot dr = \int_{AB} f \cdot dr + \int_{BC} f \cdot dr + \int_{CD} f \cdot dr$$

$$\int_{AB} f \cdot dr = \int_{0}^{1} 0 \ dt = 0 \ [since, x = 0, y = 0, z = t \ and \ 0 \le t \le 1 \ along \ AB]$$

$$\int_{BC} f \cdot dr = \int_{0}^{1} 0 \ dt = 0 \ [since, x = 0, y = t, z = 1 \ and \ 0 \le t \le 1 \ along \ BC]$$

$$\int_{CD} f \cdot dr = \int_{0}^{2} 5 \, dt = 0 \, [since, x = 1, y = 1, z = t \, and \, 0 \le t \le 2 \, along \, CD]$$

$$= [5t]_0^3 = 10.$$

Thus $\int_{P} f \cdot dr = 10$.

(iii)The parametric equation of the line joining the points (0,0,0) and (2,1,1) can be taken as x=2t, y=t, z=t where $0 \le t \le 1$.

Thus,
$$\int_C f \cdot dr = \int_0^1 (2t+3)2 + t^2 + (t^2 - 2t)dt = \int_0^1 (3t^2 + 2t + 6)dt = [t^3 + t^2 + 6t]_0^1 = 8.$$

Exercises

- 1. Evaluate $\int_{(1,1)}^{(4,2)} f \cdot dr$ where f = (x+y)i + (y-x)j along (i) the parabola $y^2 = x$ (ii) the straight line joining (1,1) and (4,2).
- 2. If $f = (x^2 y^2)i + 2xyj$, evaluate $\int_C f \cdot dr$ along the curve C in the x-y plane given by $y = x^2 x$ from the point (1,0) to (2,2).
- 3. Evaluate $\int_C f \cdot dr$ where f = (x y)i + (y 2x)j and C is the closed curve in the x-y plane x = 2cost, y = 3sint from t = 0 to $t = 2\pi$.

3.2 SURFACE INTEGRAL

Definition : Consider a surface S. Let n denote the unit outward normal to the surface S. Let R be the projection of the surface S on the x-y plane. Let f be a vector valued function defined in some region containing the surface S.

Then the surface integral of f over S is defined to be

$$\iint\limits_{S} f \cdot n \ dS = \iint\limits_{R} \frac{f \cdot n}{|n \cdot k|} dx \ xy.$$

Note: We can also define surface integral by considering the projection of the surface on the y-z plane or z-x plane.

Problem 1 : Evaluate $\iint_S f \cdot n \, dS$ where $f = (x + y^2)i - 2xj + 2yz \, k$ and S is the surface of the plance 2x + y + 2z = 6 in the first octant.

Solution : Let $\emptyset(x, y, z) = 2x + y + 2z - 6$

The unit surface normal $n = \frac{\nabla \emptyset}{|\nabla \emptyset|} = \frac{2i+j+2k}{3}$.

The projection of the surface on the x-y plane is the region R bounded by the axes and the straight line 2x+y=6 as shown in the figure.

$$\iint_{S} f \cdot n \, dS = \iint_{R} 2(3y - xy) dx \, dy$$

$$= 2 \int_{0}^{3} \int_{0}^{6-2x} (3y - xy) dy \, dx = 2 \int_{0}^{3} \left[\frac{3}{2} y^{2} - \frac{1}{2} x y^{2} \right]_{0}^{6-2x} dx$$

$$= 2 \int_{0}^{3} \left[\frac{3}{2} (6 - 2x)^{2} - \frac{1}{2} x (6 - 2x)^{2} \right] dx$$

$$= \left[-\frac{1}{2} (6 - 2x)^{3} - 18x^{2} - x^{4} + 8x^{3} \right]_{0}^{3}$$

$$= 81.$$

Problem 2: Evaluate $\iint_S (\nabla \times f) \cdot n \, dS$ where $f = y^2 i + yj - xzk$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and $z \ge 0$.

Solution : Let $\emptyset(x, y, z) = x^2 + y^2 + z^2 - a^2$.

The unit surface normal n is given by $n = \frac{\nabla \emptyset}{|\nabla \emptyset|} = \frac{2xi + 2yj + 2zk}{2\sqrt{x^2 + y^2 + z^2}} = \frac{1}{a}(xi + yj + zk)$

Also $\nabla \times f = zj - 2yk$.

$$(\nabla \times f) \cdot n = \left(\frac{1}{a}\right)(yz - 2yz) = -\left(\frac{1}{a}\right)yz.$$

Also, $n \cdot k = \left(\frac{1}{a}\right) z$.

$$\therefore \frac{\nabla \times f}{|n \cdot k|} = -y.$$

The projection of the surface on the x-y plane is the circle $x^2 + y^2 = a^2$. Let R denote the interior of the circle.

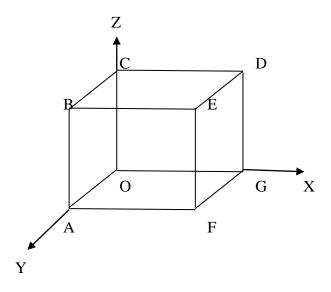
$$\iint\limits_{S} (\nabla \times f) \cdot n \ dS = -\iint\limits_{V} y \ dx \ dy$$

Put $x = r\cos\theta$ and $y = r\sin\theta$. Hence, |J| = r.

$$\iint\limits_{S} (\nabla \times f) \cdot n \ dS = -\int\limits_{0}^{2\pi} \int\limits_{0}^{a} r sin\theta r \ dr \ d\theta = -\int\limits_{0}^{2\pi} \frac{1}{3} a^{3} sin\theta d\theta = 0.$$

Problem 3: Evaluate $\iint f \cdot ndS$ where $f = (x^3 - yz)i - 2x^2yj + 2k$ and S is the surface of the cube bounded by x = 0, y = 0, z = 0, x = a, y = a and z = a.

Solution:



On the face OABC, n = -i and x = 0.

$$\therefore \iint_{OABC} f \cdot n \, dS = \int_0^a \int_0^a yz \, dy dz = \int_0^a z \left[\frac{y^2}{2} \right]_0^a dz = \int_0^a z \left[\frac{a^2}{2} - 0 \right] dz$$
$$= \frac{a^2}{2} \left[\frac{z^2}{2} \right]_0^a = \frac{a^4}{4}.$$

On the face DEFG, n = i and x = a.

$$\therefore \iint_{DEFG} f \cdot n \, dS = \int_0^a \int_0^a (a^3 - yz) \, dydz = \int_0^a \left[a^4 - \frac{a^2 z}{2} \right] dz$$
$$= a^5 - \frac{1}{4}a^4.$$

On the face OGDC, n = -j and y = 0.

$$\therefore \iint_{QGDC} f \cdot n \, dS = \int_{0}^{a} \int_{0}^{a} 0 \, dx dz = 0.$$

On the face AFEB, n = j and y = a.

$$\therefore \iint_{AFEB} f \cdot n \, dS = \int_{0}^{a} \int_{0}^{a} -2x^{2}a \, dxdz = \int_{0}^{a} -2x^{2}a^{2}dz$$
$$= -\frac{2}{3}a^{5}.$$

On the face OAFG, n = -k and z = 0.

$$\therefore \iint\limits_{OAFG} f \cdot n \, dS = -\int\limits_{0}^{a} \int\limits_{0}^{a} 2 \, dx dy = -2 \, a^2.$$

On the face CBED, n = k and z = a.

$$\therefore \iint_{CBED} f \cdot n \, dS = \int_{0}^{a} \int_{0}^{a} 2 dx dy = 2a^{2}.$$

$$\therefore \iint_{S} f \cdot n dS = \frac{a^{4}}{4} + a^{5} - \frac{1}{4}a^{4} + 0 - \frac{2}{3}a^{5} - 2a^{2} + 2a^{2} = \frac{a^{5}}{3}.$$

Problem 4: Evaluate $\iint_S (x^2 + y^2) dS$ where S is the Surface of the cone $z^2 = 3(x^2 + y^2)$ bounded by z = 0 and z = 3.

UNIT IV

GREEN'S, STOKE'S AND DIVERGENCE THEOREM

4.1 Green's theorem in plane

If C is a simple closed curve in the xy plane bounding an area R and

M(x,y) and N(x,y) are continuous functions of x and y having continuous derivatives in R, then

$$\oint_C M dx + N dy = \iint_B \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

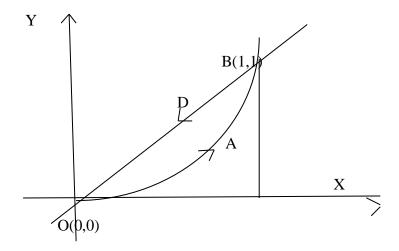
Problem 1: Verify Green's theorem in plane for the integral $\int_C (xy + y^2) dx + x^2 dy$, where C is the curve enclosing the region R bounded by the parabola $y = x^2$ and the line y = x.

Solution : Given $y = x^2$ and y = x.

Therefore,
$$x = x^2 => x^2 - x = 0 => x(x - 1) = 0 => x = 0$$
 or $x = 1$

When x=0, y=0 & when x=1, y=1

Thus the parabola and the line intersect at (0,0) and (1,1).



In the figure OABDO, the curve C consists of the parabolic arc OAB and the line segment BDO.

The parametric equations of OAB are x = t, $y = t^2$ where t varies from 0 to 1.

Here,
$$M = xy + y^2 \& N = x^2$$

$$\therefore M = t \times t^2 + t^4 = t^3 + t^4 \& N = t^2$$

$$dx = dt \& dy = 2tdt$$

$$\int_C (xy + y^2) dx + x^2 dy = \int_0^1 (t^3 + t^4) dt + t^2 2t dt = \int_0^1 (t^3 + t^4 + 2t^3) dt$$
$$= \left[\frac{t^4}{4} + \frac{t^5}{5} + \frac{2t^4}{4} \right]_0^1 = \frac{1}{4} + \frac{1}{5} + \frac{1}{2} - 0 = \frac{19}{20}$$

The parametric equations of BDO are x = t, y = t where t varies from 1 to 0.

$$\therefore M = t^2 + t^2 = 2t^2 \& N = t^2$$

$$dx = dt \& dy = dt$$

$$\int_C (xy + y^2) dx + x^2 dy = \int_1^0 (2t^2) dt + t^2 dt = \int_1^0 (2t^2 + t^2) dt$$

$$= \left[\frac{3t^3}{3}\right]_0^0 = -1.$$

Hence,

$$\int_{C} (xy + y^{2}) dx + x^{2} dy = \int_{OAB} (xy + y^{2}) dx + x^{2} dy + \int_{BDO} (xy + y^{2}) dx + x^{2} dy$$

$$= \frac{19}{20} - 1 = -\frac{1}{20} \qquad (1)$$

$$\frac{\partial N}{\partial x} = 2x \, \& \, \frac{\partial M}{\partial y} = x + 2y$$

x varies from 0 to 1 and y varies from x^2 to x.

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{0}^{1} \int_{x^{2}}^{x} (2x - x - 2y) dy dx$$

$$= \int_{0}^{1} \int_{x^{2}}^{x} (x - 2y) dy dx = \int_{0}^{1} \left(xy - 2\frac{y^{2}}{2} \right)_{x^{2}}^{x} dx$$

$$= \int_{0}^{1} \left[(xx - x^{2}) - (x^{3} - x^{4}) \right] dx = \int_{0}^{1} (x^{4} - x^{3}) dx$$

$$= \left(\frac{x^{5}}{5} - \frac{x^{4}}{4} \right)_{0}^{1} = \frac{1}{5} - \frac{1}{4} = \frac{4 - 5}{20} = -\frac{1}{20} \dots (2)$$

From (1) and (2)

$$\oint_C M dx + N dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy$$

Hence, Green's theorem is verified.

Problem 2: Verify Green's theorem in plane for the integral $\int_C x^2 dx + y dy$, where C is the curve enclosing the region R bounded by the parabola $y^2 = x$ and the line y = x.

(Hint: Common point (0,0), (1,1). For the line segment x=t, y=t & t varies from 0 to 1. For the parabolic arc $x = t^2$ & y = t, where t varies from 1 to 0. Ans. -1/28).

Problem 3: Verify Green's theorem in plane for the integral $\int_C x^2 dx + xy dy$, where C is the curve enclosing the region R bounded by the parabola $y^2 = 8x$ and the line y = 2x.

(Hint: Common point (0,0), (2,4). For the line segment x=t, y=2t & t varies from 0 to 2. For the parabolic arc $x = 2t^2$ & y = 4t, where t varies from 1 to 0. Ans. 8/3)

Problem 4: Verify Green's theorem for $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$, where C is the boundary of the region R enclosed by $y = x^2 \& y^2 = x$.

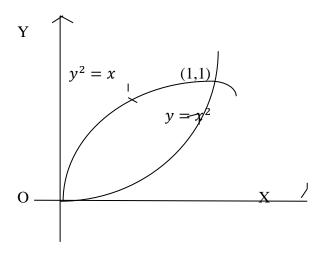
Solution: Given parabolas are $y = x^2 \& y^2 = x$.

$$\therefore x^4 = x = x^4 - x = 0 = x(x^3 - 1) = 0 = x = 0 \text{ or } x = 1.$$

When x=0, y=0.

When x=1, y=1.

Let the parabolas intersect at (0,0) and (1,1).



Now, the curve C composed of the arc Γ of the parabola $y=x^2$ and the arc Γ' of the parabola $y^2=x$.

The parametric equation of Γ is x=t, $y=t^2$, where t varies from 0 to 1.

$$\int_{\Gamma} = \int_{0}^{1} (3t^{2} - 8t^{4})dt + (4t^{2} - 6t^{3})(2tdt) = -1 \text{ (verify)}$$

The parametric equation of Γ' is $x = t^2 \& y = t$, where t varies from 1 to 0.

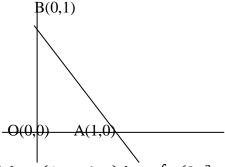
$$\int_{\Gamma'} = \int_{1}^{0} (3t^4 - 8t^2)(2tdt) + (4t - 6t^3)(dt) = \frac{5}{2} (verify)$$

$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} 10y dy dx = \frac{3}{2} (verify) \dots (2)$$

From (1) & (2) Green's theorem is verified.

Problem 4 Verify Green's theorem for $\int_C (3x^2 - 8y^2)dx + (4y - 6xy)dy$, where C is the boundary of the region R enclosed by x=0, y=0, x+y=1.

Solution:



$$\int_{C} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy = \int_{OA} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy + \int_{AB} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy + \int_{BO} (3x^{2} - 8y^{2})dx + (4y - 6xy)dy$$

Along OA : x=t, y=0, t varies from 0 to 1.

$$\int_{0A} (3x^2 - 8y^2) dx + (4y - 6xy) dy = \int_0^1 3t^2 dt = 1 \text{ (verify)}$$

Along AB:

$$\frac{x-1}{0-1} = \frac{y-0}{1-0} = t = > \frac{x-1}{-1} = t = > x - 1 = -t = > x = 1 - t & \frac{y}{1} = t = > y = t$$

x = 1 - t, y = t, t varies from 0 to 1.

$$\int_{AB} (3x^2 - 8y^2) dx + (4y - 6xy) dy = \int_0^1 (-3 + 4t + 11t^2) dt = 8/3 \text{ (verify)}$$

Along BO: x = 0, y = 1 - t, t varies from 0 to 1.

$$\int_{BO} (3x^2 - 8y^2) dx + (4y - 6xy) dy = \int_0^1 4(t - 1) dt = -2 \ (verify)$$

Thus,
$$\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = 1 + \frac{8}{3} - 2 = \frac{5}{3} (verify) \dots (1)$$

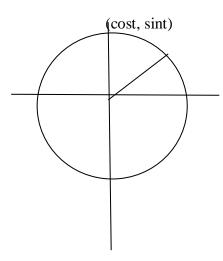
Find $\frac{\partial N}{\partial x} \& \frac{\partial M}{\partial y}$

Then,
$$\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dx dy = \int_{0}^{1} \int_{0}^{1-x} (-6y + 16y) dy dx = \frac{5}{3} \left(verify \right) \dots (2)$$

From (1) & (2),

Problem 5 : Verify Green's theorem for $\int_C (x-2y)dx + xdy$, where C is the circle $x^2 + y^2 = 1$.

Solution:



The parametric equations of the circle are x=cost, y=sint, t varies from 0 to 2π .

$$dx = -\sin t \, dt \, \& \, dy = \cos t \, dt$$

$$\int_{C} (x - 2y)dx + xdy = \int_{0}^{2\pi} (\cos t - 2\sin t)(-\sin t dt) + \cos t \cos t dt$$

$$= \int_{0}^{2\pi} (-\cos t \sin t + 2\sin^{2} t + \cos^{2} t) dy$$

$$= \int_{0}^{2\pi} \left(-\frac{\sin 2t}{2} + 2\sin^{2} t + \cos^{2} t \right) dy = 3\pi \left(\text{verifty} \right)$$

Problem 6: Evaluate $\int_C (3x + 4y)dx + (2x - 3y)dy$, where C is the circle $x^2 + y^2 = 4$

Problem 7: Show that $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = \frac{5}{3}$, where C is the boundary of the rectangular area enclosed by the lines y=0, x+y=1, x=0.

Problem 8: Show that $\int_C (3x^2 - 8y^2) dx + (4y - 6xy) dy = 20$, where C is the boundary of the rectangular area enclosed by the lines x=0, x=1, y=0, y=2.

Problem 9 : Evaluate $\int_C xy^2 dy - x^2y dx$, where C is the cardioids $r = a(1 + \cos\theta)$.

[Hint:

$$\int_{C} xy^{2} dx - x^{2}y dy = \iint_{R} (x^{2} + y^{2}) dx dy = \int_{0}^{2\pi} \int_{0}^{a(1+\cos\theta)} r^{2} (r dr) d\theta = \frac{35}{16} \pi a^{4}$$

4.2 STOKE'S THEOREM

Theorem : If S is an open two sided surface bounded by a simple closed curve C and f is a vector valued function having continuous first order partial derivatives then

$$\int_{C} f \cdot dr = \iint_{S} (\nabla \times f) \cdot n \, dS$$

where C is traversed in the anticlockwise direction.

Problem 10: Verify Stokes theorem for the vector function $f = y^2i + yj - xzk$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = a^2$ and $z \ge 0$.

Solution : By problem 2 of 3.2 $\iint_{S} (\nabla \times f) \cdot n \ dS = 0$

Now the boundary C of the hemisphere is given by the equation $x = a \cos \theta$, $y = a \sin \theta$, z = 0, $0 \le \theta \le 2\pi$.

$$\int_{C} f \cdot dr = \int_{C} y^{2} dx + y dy - xz dz = \int_{0}^{2\pi} \left[a^{2} sin^{2} \theta(-a sin \theta) + a sin \theta(a cos \theta) \right] d\theta$$

$$= -a^{3} \int_{0}^{2\pi} sin^{3} \theta d\theta + a^{2} \int_{0}^{2\pi} sin \theta \cos \theta d\theta = 0$$
Thus,
$$\int_{C} f \cdot dr = \iint_{S} (\nabla \times f) \cdot n \, dS.$$

Hence Stoke's theorem is verified.

Problem 11: By using Stoke's theorem prove that $\int_C r \cdot dr = 0$ where r = xi + yj + zk.

Solution : $\nabla \times r = 0$.

By Stoke's theorem we have, $\int_{C} r \cdot dr = \iint_{S} (\nabla \times r) \cdot n \ dS = 0$.

Problem 12: Evaluate by using Stoke's theorem $\int_C (yzdx + zxdy + xydz)$ where C is the curve $x^2 + y^2 = 1$, $z = y^2$.

Solution : We note that $yzdx + zxdy + xydz = (yzi + zxj + xyk) \cdot (idx + jdy + kdz)$

$$= f \cdot dr$$
 where $f = yzi + zxj + xyk$ and $dr = idx + jdy + kdz$

Now,
$$\int_C (yzdx + zxdy + xydz) = \int_C f \cdot dr = 0 = \iint_S (\nabla \times f) \cdot n \, dS$$

But
$$\nabla \times f = 0$$

$$\therefore \int_C (yzdx + zxdy + xydz) = 0.$$

Problem 13 : Evaluate $\int_C e^x dx + 2y dy - dz$ by using Stoke's theorem where C is the curve $x^2 + y^2 = 4$, z = 2.

Solution: $e^x dx + 2y dy - dz = (e^x i + 2y j - k) \cdot (i dx + j dy + k dz)$ where

$$f = (e^x i + 2yj - k)$$
 and $dr = (idx + jdy + kdz)$

 $\int_C e^x dx + 2y dy - dz = \int_C f \cdot dr = 0 = \iint_S (\nabla \times f) \cdot n \, dS \text{ where S is any surface whose}$ boundary is given by $x^2 + y^2 = 4$, z = 2.

Now,
$$\nabla \times f = \begin{vmatrix} i & j & k \\ \partial/\partial x & \partial/\partial y & \partial/\partial z \\ e^x & 2y & -1 \end{vmatrix} = 0$$

$$\therefore \iint_{S} (\nabla \times f) \cdot n \, dS = 0.$$

$$\therefore \int_{S} e^x dx + 2y dy - dz = 0.$$

4.3 Gauss Divergence theorem

If V is the volume bounded by a closed surface S and f is a vector valued function having continuous partial derivatives then $\iint_S f \cdot n dS = \iiint_V \nabla \cdot f dV$.

Problem 14: Verify Gauss divergence theorem for the vector function $f = (x^3 - yz)i - 2x^2yj + 2k$ over the cube bounded by x = 0, y = 0, z = 0, x = a, y = a and z = a.

Solution: By problem 3 of 3.2 we proved that $\iint_S f \cdot n \, dS = \frac{a^5}{3}$.

Now,
$$\nabla \cdot f = 3x^2 - 2x^2 = x^2$$
.

$$\iiint\limits_V \nabla \cdot f \ dV = \int\limits_0^a \int\limits_0^a \int\limits_0^a x^2 dx \ dy \ dz = \frac{1}{3} \int\limits_0^a \int\limits_0^a a^3 \ dy \ dz = \frac{1}{3} \int\limits_0^a a^4 \ dz = \frac{a^5}{3}.$$

$$\therefore \iint\limits_S f \cdot n dS = \iiint\limits_V \nabla \cdot f dx \ dy \ dz.$$

Hence Gauss divergence theorem is verified.

Problem 15: Verify Gauss divergence theorem for $f = yi + xj + z^2k$ for the cylindrical region S given by $x^2 + y^2 = a^2$; z = 0 and z = h.

Solution: $\nabla \cdot f = 2z$

The surface S of the cylinder consists of a base S_1 , the top S_2 and the curved portion S_3 .

On S_1 , z = 0, n = -k. Hence $f \cdot n = 0$.

$$\therefore \iint_{S_1} f \cdot n \, dS = 0.$$

On S_2 , z = h, n = k. Hence $f \cdot n = h^2$.

$$\iint_{S_2} f \cdot n \, dS = \iint_{S_2} h^2 dx dy \text{ where D is the region bounded by the circle}$$

$$x^2 + y^2 = a^2.$$

$$= \pi h^2 a^2$$

On
$$S_3$$
, $n = \frac{\nabla \emptyset}{|\nabla \emptyset|}$ where $\emptyset = x^2 + y^2 - a^2 = \frac{2xi + 2yj}{2\sqrt{x^2 + y^2}} = \frac{xi + yj}{a}$.

$$n \cdot j = \frac{y}{a}$$
.

$$\frac{f \cdot n}{|n \cdot j|} = 2x.$$

$$\iint\limits_{S_2} f \cdot n \, dS = \iint\limits_{R} 2x dy \, dz = a^2 \int\limits_{0}^{b} \int\limits_{0}^{2\pi} 2 \cos\theta \, d\theta \, dz = 0.$$

$$\therefore \iint_{S} f \cdot n \ dS = \iint_{S_{1}} f \cdot n \ dS + \iint_{S_{2}} f \cdot n \ dS + \iint_{S_{3}} f \cdot n \ dS = 0 + \pi h^{2} a^{2} + 0 = \pi h^{2} a^{2}.$$

$$\div \iiint_V \nabla \cdot f \ dV = \iint_S f \cdot n \ dS = \pi h^2 a^2.$$

Hence Gauss divergence theorem is verified.

Problem 16: Prove that for a closed surface S, $\iint_S r \cdot n \, dS = 3V$, where V is the volume enclosed by S.

Solution: By Gauss' divergence theorem we have,

$$\iint\limits_{S} r \cdot n \ dS = \iiint\limits_{V} \nabla \cdot r \ dV$$

=
$$3\iiint\limits_V dV = 3V$$
 where V is the volume enclosed by S.

Problem 17 : Show that $\iint_S f \cdot n \, dS = \iiint_V a^2 \, dV$ where $r = \emptyset a$ and $a = \nabla \emptyset and \nabla^2 \emptyset = 0$.

UNIT V

FOURIER SERIES

5.0 Introduction. Fourier series named after the French Mathematician cum Physicist Jean Baptiste Joseph Fourier (1768-1803), has several interesting applications in engineering problems. He introduced Fourier series in 1822 while he was investigating the problem of heat conduction. This series became a very important tool in mathematics. In this chapter we discuss the basic concepts relating to Fourier series development of several functions.

5.1 Periodic Functions. A function $f: \mathbb{R} \to \mathbb{R}$ is said to be **periodic** if there exists a positive number ω such that $f(x + \omega) = f(x)$ for all real numbers x and ω is called a **period** of f. If a periodic function has a smallest positive period ω , then ω is called the **primitive period** of f.

Example 1. The *trigonometric functions* $\sin x$ and $\cos x$ are periodicfunctions with primitive period 2π [since $\sin (x + 2\pi) = \sin x$ and $\cos (x + 2\pi) = \cos x$].

Example 2. sin 2x and $\cos 2x$ are periodic functions with primitive period π each.

Example 3. The *constant function* f(x) = c is a periodic function. In fact, every positive real number is a period of f and hence this periodic function has no primitive period.

Example 4. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$

Let ω be any rational number. If x is rational then $x + \omega$ is also rational and if x is irrational then $x + \omega$ is also irrational. Hence,

$$f(x + \omega) = \begin{cases} 0 & \text{if } x \text{ is rational} \\ 1 & \text{if } x \text{ is irrational} \end{cases}$$
$$= f(x)$$

Hence every rational number is a period of f and f has no primitive period.

Remark. Let f be a periodic function with period ω . If the values of f(x) are known in an interval of length ω , then by periodicity f(x) can be determined for all x. Hence the graph of a periodic function is obtained by periodic function of its graph in any interval of length ω .

Example 1. The graph of the periodic function $f(x) = \sin x$ is given below in

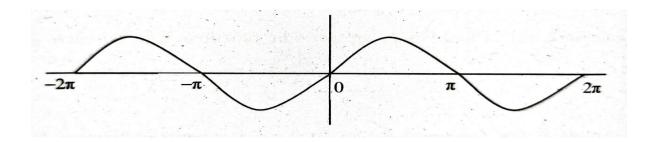


Figure 1

Example 2. Let f be the periodic function defined by

$$f(x) = \begin{cases} -1 & \text{if } -\pi \le x < 0 \\ 1 & \text{if } 0 \le x < \pi \end{cases} \text{ and } f(x + 2\pi) = f(x).$$

The graph of the periodic function $\sin x$ is given below in figure 2.

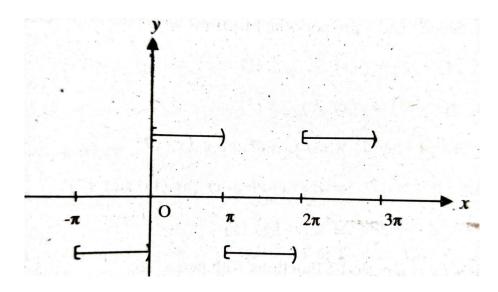


Figure 2

Example 3. Let f be a periodic function defined by

$$f(x) = \begin{cases} x & \text{if } -\pi \le x < \pi \\ f(x+2\pi) = f(x) \end{cases} \text{ and }$$

(ie)
$$f(x) = x$$
 if $-\pi < x < \pi$ and $f(x + 2\pi) = f(x)$

The graph of the periodic function $\sin x$ is given below in figure 3.

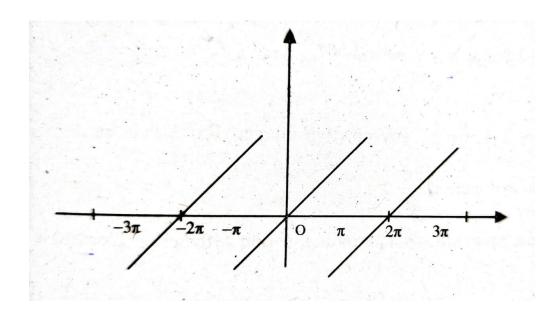


Figure 3

Solved Problems.

Problem 1. Let f and g be periodic functions with period ϖ each and let a and b be real numbers. Prove that af + bg is also a periodic function with period ϖ .

Solution. Since f and g are periodic functions with period ω each we have for all x,

Now,
$$(af + bg)(x + \varpi) = af(x + \varpi) + bg(x + \varpi)$$

= $af(x) + bg(x)$ (by (1)and (2))
= $(af + bg)(x)$

Hence af + bg is a periodic function with period ϖ .

Problem 2. If ϖ is a period of f 'prove that $n\varpi$ is also a period of f where n is any positive integer.

Solution. Let n be any positive integer. Since ϖ is a period of f we have $f(x) = f(x + \omega)$. Using this fact repeatedly we have

$$f(x) = f(x + \omega) = f(x + 2\omega) = \dots = f(x + (n - 1)\omega) = f(x + n\omega)$$

It follows that n ω is a period of f.

Problem 3. Let *n* be any positive integer. Prove that $\sin nx$ is a periodic function with period $\frac{2\pi}{n}$.

Solution. Since $\sin x$ is a periodic function with period 2π we have $\sin(x + 2\pi) = \sin x$ for all x.

Now, let $g(x) = \sin x$

Then
$$g\left(x + \frac{2\pi}{n}\right) = \sin\left[n\left(x + \frac{2\pi}{n}\right)\right] = \sin(nx + 2\pi) = \sin nx = g(x)$$

Hence $\sin nx$ is a periodic function with period $\frac{2\pi}{n}$.

Problem 4. Let f(x) be a periodic function with period $\overline{\omega}$. Prove that for any positive real number a, f(ax) is a periodic function with period $\frac{\overline{\omega}}{a}$.

Solution. Since f(x) is a periodic function with period 2π we have $f(x + \omega) = f(x)$ for all x. Let g(x) = f(ax).

Now,
$$g\left(x + \frac{\varpi}{a}\right) = f\left[a\left(x + \frac{\varpi}{a}\right)\right] = f(ax + \varpi) = f(ax) = g(x).$$

Hence g(x) is a periodic function with period $\frac{\overline{\omega}}{a}$.

Exercises.

1. Find the primitive period of the following functions

(a)
$$\sin 2x$$
 (b) $\cos 2x$ (c) $\cos nx$ (d) $\sin \pi x$ (e) $\cos 2\pi x$ (f) $\cos \left[\left(\frac{2\pi x}{k} \right) \right]$

Answers. 1. (a)
$$\pi$$
 (b) π (c) $\frac{2\pi}{n}$ (d)2 (e)1 (f) k

5.2 FOURIER SERIES - FULL RANGE

Since periodic functions which occur frequently in engineering problems are rather complicated, representation of periodic functions in terms of a simple periodic function is a matter of great practical importance. We now discuss the problem of representing various functions of period 2π . (Full range) in terms of the simple functions namely constant function t and t some trigonometric functions t sin t, t cos t, t cos t, t cos t, t cos t c

Definition. Trigonometric Series. A series of the form

$$a_0 + a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots + a_n \cos nx + b_n \sin nx + \dots$$

$$= a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Where a_n and b_n are real constants is called a **trigonometric series** a_n and b_n are called the coefficients of the series (**Fourier coefficients**). Since each term of the trigonometric series is

a function of period 2π it follows that if the series converges then the sum is also a function of period 2π .

We now state the following theorem and its results without proof and it becomes the definition of **Fourier series**

$$a_1 \cos x + b_1 \sin x + a_2 \cos 2x + b_2 \sin 2x + \dots + a_n \cos nx + b_n \sin nx$$

Theorem 1. Let f(x) be a periodic function with period 2π . Suppose f(x) can be represented as a **trigonometric series.**

Then we have

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx \qquad n = 1,2,3,...$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx \qquad n = 1,2,3,...$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx \qquad n = 1,2,3,...$$

Remark 1. The formulae for the coefficients a_0 , a_n , b_n , given in the above theorem are known as Fourier coefficients.

Euler's Formulae.

Definition - Fourier series

The series $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$ when a_0, a_n, b_n are given by the Euler's formulae called the Fourier series of f(x). Also, the coefficients a_0, a_n, b_n are called Fourier coefficients.

Remark 2. We use $\frac{a_0}{2}$ instead of a_0 in the Fourier series just to obtain uniformity in *Euler's formulae*.

Remark 3.If f(x) is a periodic function with period 2π we can obtain the Fourier series of f(x) in any interval of length 2π . If the interval is taken as $(c, c + 2\pi)$ then the Euler's Formulae for Fourier coefficients are given by

$$a_0 = \frac{1}{\pi} \int_0^{c+2\pi} f(x) dx$$

$$a_n = \frac{1}{\pi} \int_c^{c+2\pi} f(x) \cos nx dx \qquad n = 1,2,3,...$$

$$b_n = \frac{1}{\pi} \int_c^{c+2\pi} f(x) \sin nx dx \qquad n = 1,2,3,...$$

The calculation of the Fourier coefficients of a function can be simplified for certain functions.

Definition. Areal function f(x) is called an **even function** if f(-x) = f(x) for all x.

The function f(x) is called an **odd function** if f(-x) = -f(x).

For example, (i) $\cos nx$ is an even function, (ii) $\sin nx$ is an odd function.(iii) x^n is an odd function if n is an odd integer and an even function if n an even integer.

Remark 1. If f(x) is an even function $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$

If
$$f(x)$$
 is an odd function $\int_{-a}^{a} f(x) dx = 0$

Remark 2.

- (i) The product of two even functions is an even function.
- (ii) The product of two odd functions is an even function.
- (iii) The product of an even function and an odd function is anodd function.

Remark 3. If f(x) is. an odd function then $f(x) \cos nx$ is also an odd function.

Hence
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx = 0$$
 and $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx = 0$

Thus, for an odd function the Fourier coefficients a_0 and a_n are 0.

Also
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \ dx$$

(Since, $f(x) \sin nx$ is an even function.)

Remark 4. If f(x) is an even function then $f(x) \sin nx$ is an oddfunction.

Hence
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = 0$$
 for all n .

Using the above remarks, we give below the **working rules** for calculating the Fourier coefficients of a periodic function with period 2π .

Working Rules.

Let f(x) be a periodic function with period 2π . Suppose the given interval is $(-\pi, \pi)$.

Step 1. Check whether f(x) is an even function or an odd function.

Step 2. (i) If f(x) is an even function then $b_n = 0$ for all n and

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx \, for \, all \, n \ge 0$$

(ii) If f(x) is an odd function then $a_n = 0$ for all $n \ge 0$ and

$$a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \ dx$$

Step 3. If f(x) is neither an even function nor an odd function in $(-\pi, \pi)$ or if the given interval is not $(-\pi, \pi)$, then calculate the Fourier coefficients by using Euler's formulae (refer Remark I)

The following results on integration will be useful in calculating the Fouriercoefficients.

Result 1. Bernoulli's formula.

$$\int u \, dv = uv - u'v_1 + u''v_2 - u'''v_3 + \cdots \qquad where$$

$$u' = \frac{du}{dx}, u'' = \frac{d^2u}{dx^2}, u''' = \frac{d^3u}{dx^3} etc$$

$$and \ v_1 = \int v \, dx, v_2 = \int v_1 \, dx, v_3 = \int v_2 \, dx, \dots etc$$

Result 2. (i) $\int e^{ax} \sin bx \ dx = \frac{e^{ax}}{a^2 + b^2} [a \sin bx - b \cos bx]$

(ii)
$$\int e^{ax} \cos bx \ dx = \frac{e^{ax}}{a^2 + b^2} [a \cos bx - b \sin bx]$$

Result 3. Noe let $g(x) = \sin nx$

Then
$$g\left(x + \frac{2\pi}{n}\right) = \sin\left[n\left(x + \frac{2\pi}{n}\right)\right] = \sin(nx + 2\pi) = \sin nx = g(x)$$

Hence $g(x) = \sin nx$ is a periodic function with period $\frac{2\pi}{n}$ where n is a positive integer.

Solved Problems.

Problem 1. Determine the Fourier expansion of the function f(x) = x where $-\pi \le x \le \pi$

Solution. Obviously f(x) = x is an odd function

Hence $a_n = 0$ for all $n \ge 0$.

Now,
$$b_n = \frac{2}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \frac{2}{\pi} \int_{-\pi}^{\pi} x \sin nx \ dx$$

Taking u = x and $dv = \sin nx \ dx$ and applying Bernoulli's formula we get

$$b_n = \frac{2}{\pi} \left[\frac{-x \cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\pi}$$
$$= -\frac{2}{n\pi} [\pi \cos n\pi]$$
$$= \frac{-2(-1)^n}{n}$$
$$= \frac{2(-1)^{n+1}}{n}$$

Hence $x = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{2}{n} \sin nx$

$$\therefore x = 2 \left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \cdots \right].$$

Problem 2. Find the Fourier series for the function $f(x) = x^2$ where $-\pi \le x \le \pi$ and deduce that

(i)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$

(ii)
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

$$(iii)\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} - \dots = \frac{\pi^2}{8}$$

Solution. Let $f(x) = x^2$. We note that is an even function.

Hence,
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x^2 dx \ (\because x^2 \text{ is an even function})$$

$$= \frac{2}{\pi} \left[\frac{x^3}{3} \right]_{0}^{\pi}$$

$$= \frac{2\pi^2}{3}$$

Where,
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \cos nx \ dx$$

$$= \frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos nx \ dx \ (\because x^{2} \cos nx \ is \ an \ even \ function)$$

Now by applying the Bernoulli's formula

$$\int u \, dv = uv - u'v_1 + u''v_2 - u'''v_3 + \cdots$$

Where $u = x^2$ and $dv = \cos nx \, dx$ so that u' = 2x, ; u'' = 2; u''' = 0

Now,
$$a_n = \frac{2}{\pi} \left[\frac{2\pi \cos nx}{n^2} \right]_0^{\pi} = \frac{4(-1)^n}{n^2}$$

Now, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} x^2 \sin nx \ dx = 0$ (since $x^2 \sin nx$ is an odd function).

Hence,
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \left(\frac{(-1)^n \cos nx}{n^2}\right)$$
....(1)

Deduction. (i) Put $x = \pi$ in (1) and we get

$$\pi^2 = \frac{\pi^2}{3} + 4\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots\right).$$

Hence,
$$4\left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots\right) = \pi^2 - \frac{\pi^2}{3} = \frac{2\pi^2}{3}$$
.

Hence,
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
.

(ii) Put x = 0 in (1) and we get

$$\therefore 0 = \frac{\pi^2}{3} + 4\left(-\frac{1}{1^2} + \frac{1}{2^2} - \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots\right)$$

(i) Hence, we get
$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

Adding the results (i) and (ii) we get

$$2\left(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots + \frac{1}{n^2} + \dots\right) = \frac{\pi^2}{4}$$

Hence,
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$

Problem 3. Show that in the range 0 to 2π the Fourier series expansion for e^x is

$$\frac{e^{2\pi} - 1}{\pi} \left[\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{\cos nx}{n^2 + 1} \right) - \sum_{n=1}^{\infty} \left(\frac{\sin nx}{n^2 + 1} \right) \right]$$

Solution. Let $f(x) = e^x$

$$a_0 = \frac{1}{\pi} \int_0^{2\pi} f(x) \ dx = \frac{1}{\pi} \int_0^{2\pi} e^x \ dx = \frac{1}{\pi} [e^x]_0^{2\pi} = \frac{e^{2\pi} - 1}{\pi}.$$

Now taking, $I_n = \frac{1}{\pi} \int_0^{2\pi} e^x \cos nx \ dx$(1)

$$= [e^{x} \cos nx]_{0}^{2\pi} + n \int_{0}^{2\pi} e^{x} \sin nx \, dx$$

$$= (e^{2\pi} - 1) + n \left[\{e^{x} \sin nx\}_{0}^{2\pi} - n \int_{0}^{2\pi} e^{x} \cos nx \, dx \right]$$

$$\therefore I_{n} = (e^{2\pi} - 1) - n^{2}I_{n}$$

$$\therefore (n^{2} + 1)I_{n} = (e^{2\pi} - 1)$$

$$\therefore I_{n} = \left(\frac{e^{2\pi} - 1}{n^{2} + 1}\right)$$

$$Hence, a_{n} = \frac{1}{\pi} \left(\frac{e^{2\pi} - 1}{n^{2} + 1}\right)$$

Similarly, we can prove that $b_n = -\left(\frac{n(e^{2\pi}-1)}{\pi(n^2+1)}\right)$ (verify)

$$\therefore e^{x} = \frac{e^{2\pi} - 1}{\pi} \left[\frac{1}{2} + \sum_{n=1}^{\infty} \left(\frac{\cos nx}{n^2 + 1} \right) - \sum_{n=1}^{\infty} \left(\frac{\sin nx}{n^2 + 1} \right) \right]$$

Problem 4. If $f(x) = \begin{cases} -x & \text{if } -\pi < x < 0 \\ x & \text{if } 0 < x < \pi \end{cases}$ expand f(x) as a Fourier series in the interval $(-\pi,\pi)$.

Solution. Clearly f(-x) = f(x) for all $x \in (-\pi, \pi)$. Hence f(x) is an even function in $(-\pi, \pi)$. Hence the function can be expanded as a Fourier series of the form $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$ where $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx$.

Now, $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) dx = \frac{2}{\pi} \int_{0}^{\pi} f(x) dx$ (Since f(x) is an even function)

$$= \frac{2}{\pi} \int_{0}^{\pi} x \ dx = \frac{2}{\pi} \left[\frac{x^{2}}{2} \right]_{0}^{\pi} = \frac{2}{\pi} \left[\frac{x^{2}}{2} \right] = \pi$$

Now, $a_n = \frac{2}{\pi} \int_0^{\pi} x \cos nx \ dx$

$$= \frac{2}{\pi} \left[\frac{x \sin nx}{n} \right]_0^{\pi} - \frac{2}{n\pi} \int_0^{\pi} \sin nx \ dx = \frac{2}{\pi n^2} [\cos nx]_0^{\pi}$$

$$= \frac{2}{\pi n^2} [(-1)^n - 1]$$

$$= \begin{cases} -\frac{4}{\pi n^2} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Hence, $f(x) = \frac{\pi}{2} - \frac{\pi}{4} \sum_{n=1}^{\infty} \left(\frac{\cos nx}{n^2} \right)$ where n is odd.

$$\therefore f(x) = \frac{\pi}{2} - \frac{4}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right]$$

Note. This problem can also be re stated as f(x) = |x| in the interval $-\pi < x < \pi$.

Problem 5. Find the Fourier series of the function $f(x) = \begin{cases} \pi + 2x & \text{if } -\pi < x < 0 \\ \pi - 2x & \text{if } 0 \le x < \pi \end{cases}$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

Solution. Here the given function is $f(x) = \pi - 2|x|$ and hence it is an even function. Hence $b_n = 0$ for all n.

Now,
$$a_0 = \frac{2}{\pi} \int_0^{\pi} (\pi - 2x) dx = -\frac{1}{\pi} [(\pi - 2x)^2]_0^{\pi} = -\frac{1}{\pi} [(-\pi)^2 - \pi^2] = 0$$

Also,
$$a_n = \frac{2}{\pi} \int_0^{\pi} (\pi - 2x) \cos nx \, dx$$

$$= \frac{2}{\pi} \left[(\pi - 2x) \frac{\sin nx}{n} \right]_0^{\pi} + \frac{4}{\pi} \int_0^{\pi} \sin nx \, dx$$

$$= 0 + \frac{4}{\pi n^2} [-\cos nx]_0^{\pi}$$

$$= \frac{4}{\pi n^2} [-(-1)^n + 1]$$

$$= \begin{cases} 0 & \text{if } n \text{ is odd} \\ \frac{8}{\pi n^2} & \text{if } n \text{ is even} \end{cases}$$

$$\therefore f(x) = \frac{8}{\pi} \sum_{n=0}^{\infty} \left(\frac{\cos(2n-1)\pi}{(2n-1)^2} \right)$$

Putting x = 0 in the above result we get $f(0) = \frac{8}{\pi} \left[\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right]$

$$\therefore \ \pi = \frac{8}{\pi} \left[\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right] \ (since \ f(0) = \pi, by \ definition)$$

Hence,
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
.

Problem 6. Find the Fourier series for $f(x) = |\sin x|$ in $(-\pi, \pi)$ of periodicity 2π .

Solution. We note that $f(x) = |\sin x|$ is an even function of x through $\sin x$ is an odd function. Hence f(x) will contain only cosine terms in its Fourier series.

Let
$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx$$

Now,
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin x| dx$$

 $= \frac{2}{\pi} \int_0^{\pi} |\sin x| \, dx \text{ (Since } |\sin x| \text{ is an even function)}$

$$= \frac{2}{\pi} \int_{0}^{\pi} \sin x \ dx$$

$$=\frac{2}{\pi}[-\cos x]_0^{\pi}$$

$$=\frac{2}{\pi}[1+1]$$

$$=\frac{4}{\pi}$$

Now, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |\sin x| \cos nx \ dx$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{0} |\sin x| \cos nx \ dx + \frac{1}{\pi} \int_{0}^{\pi} |\sin x| \cos nx \ dx$$

 $= \frac{2}{\pi} \int_0^{\pi} \sin x \cos nx \ dx \ (\because f(x) = |\sin x| = \sin x \ in \ [-\pi, \pi])$

$$= \frac{1}{\pi} \int_{0}^{\pi} \left[\sin(n+1)x - \sin(n-1)x \right] dx$$

$$= \frac{1}{\pi} \left[-\frac{\cos(n+1)x}{n+1} + \frac{\cos(n+1)x}{n+1} \right]_0^{\pi} \text{ if } n \neq 1$$

$$= \frac{1}{\pi} \left[-\frac{1}{n+1} |\{(-1)^{n+1} - 1\}| + \frac{1}{n-1} \{(-1)^{n-1} - 1\} \right]$$

$$= \frac{1}{\pi} \left[-\frac{1}{n+1} \{1 + (-1)^n\} + \frac{1}{n-1} \{1 + (-1)^n\} \right]$$
$$= \frac{1}{\pi} \left(\frac{-2}{n^2 - 1} \right) \{1 + (-1)^n\}$$

$$\therefore For \ n > 1, a_n = f(x) = \begin{cases} 0 & \text{if n is odd} \\ -\frac{4}{\pi(n^2 - 1)} & \text{if n is even and } n \neq 1 \end{cases}$$

If n = 1, $a_1 = \frac{2}{\pi} \int_0^{\pi} \sin x \cos x \ dx = \frac{2}{\pi} \int_0^{\pi} \sin x \ d(\sin x) = \frac{2}{\pi} \left[\frac{\sin^2 x}{2} \right]_0^{\pi} = 0$.

$$\therefore f(x) = |\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{(4n^2 - 1)}$$

$$= \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{(2n-1)(2n+1)}$$

$$\therefore |\sin x| = \frac{2}{\pi} - \frac{4}{\pi} \sum_{n=1}^{\infty} \left[\frac{\cos 2nx}{(2n-1)(2n+1)} \right]$$

Problem 7. If
$$f(x) = \begin{cases} -\frac{\pi}{4} & \text{if } -\pi < x < 0 \\ \frac{\pi}{4} & \text{if } 0 < x < \pi \end{cases}$$

Solution. We note that f(x) is a periodic function with period 2π .

Now,
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx = \frac{1}{\pi} \int_{-\pi}^{0} \left(-\frac{\pi}{4} \right) \ dx + \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{4} \right) \ dx$$
$$= \frac{1}{\pi} \left[\left(-\frac{\pi}{4} \right) [x]_{-\pi}^{0} \right] + \frac{1}{\pi} \left[\left(\frac{\pi}{4} \right) [x]_{0}^{\pi} \right]$$
$$= -\frac{1}{\pi} \left(\frac{\pi}{4} \right) (\pi) + \frac{1}{\pi} \left(\frac{\pi}{4} \right) (\pi)$$
$$= -\frac{\pi}{4} + \frac{\pi}{4} = 0$$

Now, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx = \int_{-\pi}^{0} \left(-\frac{\pi}{4} \right) \cos nx \ dx + \frac{1}{\pi} \int_{0}^{\pi} \left(\frac{\pi}{4} \right) \cos nx \ dx$

$$= -\frac{\pi}{4} \left[\frac{\sin nx}{n} \right]_{-\pi}^{0} + \frac{\pi}{4} \left[\frac{\sin nx}{n} \right]_{0}^{\pi}$$

$$= -\frac{\pi}{4}[0-0] + \frac{\pi}{4}[0-0] = 0$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \int_{-\pi}^{0} \left(-\frac{\pi}{4} \right) \sin nx \ dx + \int_{0}^{\pi} \left(\frac{\pi}{4} \right) \sin nx \ dx$$

Hence, $b_n = -\frac{\pi}{4} \int_{-\pi}^{0} \sin nx \ dx + \frac{\pi}{4} \int_{0}^{\pi} \sin nx \ dx$

$$= 0 - \frac{\pi}{4} \left[\frac{\cos nx}{n} \right]_0^{\pi} = -\frac{\pi}{4n} [\cos n\pi - 1]$$

Thus
$$b_n = -\frac{\pi}{4n}[(-1)^n - 1]$$

Hence
$$b_1 = -\frac{\pi}{4}[-1 - 1] = \frac{\pi}{2}$$

$$b_2 = -\frac{\pi}{8}[1-1] = 0$$

$$b_3 = -\frac{\pi}{12}[-2] = \frac{\pi}{6}$$

$$b_4 = -\frac{\pi}{16}[1-1] = 0$$
 etc

Hence $f(x) = \frac{\pi}{2} \sin x + \frac{\pi}{6} \sin 3x + \cdots$

(ie)
$$f(x) = \frac{\pi}{2} \left[\sin x + \frac{1}{3} \sin 3x + \frac{1}{5} \sin 5x + \dots \right]$$

Problem 8. Find the Fourier series for defined in $f(x) = e^x$ defined in $[-\pi, \pi]$

Solution.
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \ dx = \frac{1}{\pi} [e^x]_{-\pi}^{\pi} = \frac{1}{\pi} (e^\pi - e^{-\pi}) = \frac{2 \sinh \pi}{\pi}.$$

Now, $a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \ dx = \frac{1}{\pi} \int_{0}^{2\pi} e^x \cos nx \ dx$

$$= \frac{1}{\pi} \left[\frac{e^x}{1^2 + n^2} (\cos nx + n \sin nx) \right]_{-\pi}^{\pi}$$

[using the formula in integration $\int e^{ax} \cos bx \ dx = \frac{e^x}{a^2 + b^2} (a \cos bx + b \sin bx)$]

$$\therefore a_n = \frac{1}{\pi(n^2+1)} [e^{\pi} \cos n\pi - e^{-\pi} \cos n\pi]$$

$$= \frac{\cos n\pi (e\pi - e^{-\pi})}{\pi (n^2 + 1)} = \frac{(-1)^n 2 \sinh \pi}{\pi (n^2 + 1)}$$

Now, $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \ dx = \frac{1}{\pi} \int_{-\pi}^{\pi} e^x \sin nx \ dx$

$$= \frac{1}{\pi} \left[\frac{e^{ax}}{1^2 + n^2} (\sin nx - n \cos nx) \right]_{-\pi}^{\pi}$$

[using the formula $\int e^{ax} \cos bx \ dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \sin bx)$ in integration]

$$= \frac{1}{\pi(n^2 + 1)} \left[e^{\pi} (0 - n \cos n\pi) - e^{-\pi} (0 - n \cos n\pi) \right]$$

$$= \frac{n(-1)^n (e^{-\pi} - e^{\pi})}{\pi(n^2 + 1)} = \frac{-2n(-1)^n \sinh \pi}{\pi(n^2 + 1)}$$

$$\therefore e^x = \frac{\sinh \pi}{\pi} + \frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} \cos nx + \frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty} \frac{n(-1)^{n+1}}{n^2 + 1} \sin nx$$

$$= \frac{\sinh \pi}{\pi} \left[1 + 2 \sum_{n=1}^{\infty} \frac{(-1)^n \cos nx}{n^2 + 1} - \frac{n(-1)^n \sin nx}{n^2 + 1} \right].$$

Exercises.

1. Obtain the Fourier coefficient a_0 for the following functions.

(i)
$$f(x) = x(2\pi - x)$$
 in $0 < x < 2\pi$

(ii)
$$f(x) = |x| \text{ in } -\pi < x < \pi$$

$$(iii) f(x) = x^2 \text{ in } -\pi < x < \pi$$

$$(iv) f(x) = x + x^2 \text{ in } -\pi < x < \pi$$

(v)
$$f(x) = e^x \text{ in } -\pi < x < \pi$$

$$(vi) f(x) = |\cos x| \text{ in } -\pi < x < \pi$$

(vii)
$$f(x) = \begin{cases} 0 & in - \pi < x < 0 \\ x & in & 0 < x < \pi \end{cases}$$

$$(viii) f(x) = \begin{cases} 2 & in & 0 < x < \frac{2\pi}{3} \\ 1 & in & \frac{2\pi}{3} < x < \frac{4\pi}{3} \\ 0 & in & \frac{4\pi}{3} < x < 2\pi \end{cases}$$

2. Obtain the Fourier coefficients b_n for the following functions.

(i)
$$f(x) = x^2$$
 in $0 < x < 2\pi$

(ii)
$$f(x) = \begin{cases} 0 & \text{in } 0 < x < \pi \\ 2\pi - x & \text{in } \pi < x < 2\pi \end{cases}$$

$$(iii) f(x) = \sin(x/2) \text{ in } -\pi < x < \pi$$

$$(iv) f(x) = \begin{cases} -\pi & in - \pi < x < 0 \\ x & in \quad 0 < x < \pi \end{cases}$$
 Hence find b_3

3. Find the Fourier coefficients b_n for the following functions given below.

(i)
$$f(x) = x^2$$
 in $0 < x < 2\pi$. Hence find b_2

(ii)
$$f(x) = \begin{cases} -\pi & in - \pi < x < 0 \\ x & in \quad 0 < x < \pi \end{cases}$$
 Hence find b_3

(iii)
$$f(x) = \begin{cases} 0 & in - \pi < x \le 0 \\ x & in \quad 0 < x < \pi \end{cases}$$
 Hence find $\frac{b_1 + b_2 + b_3}{3}$

4. Obtain the Fourier series for the functions given below.

(i)
$$f(x) = \begin{cases} 1 & \text{in } 0 < x < \pi \\ 2 & \text{in } \pi < x < 2\pi \end{cases}$$

(ii)
$$f(x) = \begin{cases} x & in - \pi \le x \le 0 \\ 0 & in \quad 0 \le x \le \pi \end{cases}$$

(iii)
$$f(x) = \begin{cases} -x & in - \pi < x \le 0 \\ 0 & in \quad 0 < x \le \pi \end{cases}$$

(iv)
$$f(x) = \begin{cases} -\pi & in - \pi < x < 0 \\ x & in 0 < x < \pi \end{cases}$$

- 5. If $f(x) = \begin{cases} \sin x & \text{in } 0 \le x \le \pi \\ 0 & \text{in } \pi \le x \le 2\pi \end{cases}$ obtain the Fourier series for f(x) of periodicity 2π and hence evaluate $\frac{1}{1.3} + \frac{1}{3.5} + \frac{1}{5.7} + \cdots$
- 6. Find the Fourier series for $f(x) = \pi^2 x^2$ in $-\pi < x < \pi$
- 7. Obtain the Fourier series for f(x) given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi} & in \pi \le x \le 0 \\ 1 \frac{2x}{\pi} & in \quad 0 \le x \le \pi \end{cases}$
- 8. Express $f(x) = (\pi x)^2$ as a Fourier series in $0 < x < 2\pi$ and hence find the sum of the series $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$
- 9. Find the Fourier coefficients a_n of the function $f(x) = \begin{cases} x & in \quad (0,\pi) \\ 2\pi x & in \quad (\pi,2\pi) \end{cases}$ with periodicity 2π

5.3 FOURIER SERIES - HALF RANGE

In several engineering and physical applications, it is required to obtain the Fourier series expansion of a function in an interval [0, l] where l is half the period. Such an expansion is called **Half Range Fourier series.**

Half Range Sine Series.

Suppose f(x) is defined in the interval [0, l]. We now define a newfunction as follows $f(x) = \begin{cases} f(x) & \text{if } 0 \le x \le l \\ -f(-x) & \text{if } -l \le x \le 0 \end{cases}$. It is clear from the definition that f(x) is an *odd function* defined in the interval [-l, l], Hence the Fourier series of f(x) contains only *sine* terms. Further in the interval [0, l], f(x) = f(x) and hence the *sine* series of f(x) gives the required *sine* series of f(x) in the interval [0, l]. Thus

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{l}\right) \text{ where } b_n = \frac{2}{l} \int_{0}^{l} f(x) \left(\frac{n\pi x}{l}\right) dx$$

Half Range Cosine Series.

We define
$$F(x) = \begin{cases} f(x) & \text{if } 0 \le x \le l \\ f(-x) & \text{if } -l \le x \le 0 \end{cases}$$

Since F(x) = f(-x).F(x) is an *even function*defined in the interval [-l, l]. Hence the Fourier series of F(x) contains only *cosine* terms. Further in the interval [0, l], F(x) = f(x) and hence the *cosine* series of F(x) gives the cosine series of f(x) in [0, l].

Thus

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi x}{l}\right)$$

Where,

$$a_0 = \frac{2}{l} \int_0^l f(x) \ dx \ and \ a_n = \frac{2}{l} \int_0^l f(x) \cos\left(\frac{n\pi x}{l}\right) \ dx$$

Note: If f(x) is defined in the interval $[0, \pi]$ then

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \ dx$$

Solved Problems.

Problem 1. Find the Fourier series for f(x) = k in $0 < x < \pi$.

Solution. The Fourier *sine* series of f(x) in the interval $0 < x < \pi$ is given by $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$ where $b_n = \frac{2}{\pi} \int_0^l f(x) \sin nx \ dx$.

Now,
$$b_n = \frac{2}{\pi} \int_0^l k \sin nx \ dx = \frac{2k}{\pi} \left[\frac{\cos nx}{n} \right]_0^{\pi} = \frac{2k}{n\pi} \left[-\cos n\pi - (-1) \right]$$

$$=\frac{2k}{n\pi}[1-(-1)^n]=\begin{cases} \frac{4k}{n\pi} & if \quad n \text{ is odd} \\ 0 & if \quad n \text{ is even} \end{cases}$$

Hence the required sine series $f(x) = \sum_{n=1}^{\infty} \frac{4k}{(2n-1)\pi} \sin(2n-1)x$

$$= \frac{4k}{\pi} \left[\frac{\sin x}{1} + \frac{\sin 3x}{3} + \frac{\sin 5x}{5} + \cdots \right]$$

Problem 2.Prove that the function f(x) = x can be expanded

(i) In a series of cosines in $0 \le x \le \pi$ as

$$x = \frac{\pi}{2} - \frac{\pi}{4} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right]$$

Hence deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

(ii) In a series of sines in $0 \le x \le \pi$ as

$$x = 2\left[\frac{\sin x}{1} + \frac{\sin 2x}{2^2} + \frac{\sin 3x}{3^2} + \dots\right]$$

Hence deduce that $1 - \frac{1}{3} + \frac{1}{5} - \dots = \frac{\pi}{4}$

Solution. (i)
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \ dx = \frac{2}{\pi} \int_0^{\pi} x \ dx = \frac{2}{\pi} \left[\frac{x^2}{2} \right]_0^{\pi} = \pi$$

Hence
$$\frac{a_0}{2} = \frac{\pi}{2}$$

Now, $a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \ dx = \frac{2}{\pi} \int_0^{\pi} x \cos nx \ dx$

$$= \frac{2}{\pi} \left[\frac{x \sin nx}{n} + \frac{\cos nx}{n^2} \right]_0^{\pi}$$

$$=\frac{2}{\pi}\left[\frac{\cos nx}{n^2}-\frac{1}{n^2}\right]$$

$$= \frac{2}{\pi} \left[\frac{[(-1)^n - 1]}{n^2} \right]$$

$$\therefore a_n = \begin{cases} -\frac{4}{\pi n^2} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Hence the cosine series for f(x) = x in $(0, \pi)$ is given by

$$x = \frac{\pi}{2} - \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$$

$$x = \frac{\pi}{2} - \frac{4}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \dots \right]$$

Putting x = 0 in the above result $x = \frac{\pi}{2} - \frac{4}{\pi} \left[\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots \right]$

Hence,
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$$
.

(ii) Now,
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \ dx = \frac{2}{\pi} \int_0^{\pi} x \sin nx \ dx$$

$$= \frac{2}{\pi} \left[-\frac{\cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\pi}$$

$$=\frac{2}{\pi}\Big[-\frac{\pi\cos n\pi}{n}\Big]$$

$$=\frac{-2(-1)^n}{n}$$

The sine series for f(x) = x in $[0,\pi]$ is given as

Hence
$$x = 2\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sin nx}{n} = 2\left[\frac{\sin x}{1} - \frac{\sin 2x}{2} + \frac{\sin 3x}{3} - \cdots\right]$$

Putting $x = \frac{\pi}{2}$ in the above result we get

$$\frac{\pi}{2} = 2\left[\frac{\sin(\pi/2)}{1} - \frac{\sin\pi}{2} + \frac{\sin(3\pi/2)}{3} - \frac{\sin2\pi}{4} + \cdots\right]$$

$$(ie)\frac{\pi}{2} = 2\left[\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \cdots\right].$$

$$Hence\ 1 - \frac{1}{3} + \frac{1}{5} - \cdots = \frac{\pi}{4}.$$

Problem 3. Find the Fourier (i) cosine series and (ii) sine series for the function $f(x) = \pi - x$ in the interval $(0, \pi)$.

Solution. (i) The Fourier cosine series of f(x) is given by $f(x) = a_0 + \sum_{n=1}^{\infty} a_n \cos nx$

$$a_{0} = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) dx = \frac{2}{\pi} \left[\pi x - \frac{x^{2}}{2} \right]_{0}^{\pi} = \frac{2}{\pi} \left(\frac{\pi^{2}}{2} \right) = \pi.$$

$$Now, a_{n} = \frac{2}{\pi} \int_{0}^{\pi} (\pi - x) \cos nx dx$$

$$= \frac{2}{\pi} \left[(\pi - x) \frac{\sin nx}{n} - \frac{\cos nx}{n^{2}} \right]_{0}^{\pi}$$

$$= \frac{2}{\pi} \left[-\frac{\cos nx}{n^{2}} + \frac{1}{n^{2}} \right]$$

$$= \frac{2}{\pi n^{2}} \left[(-1)^{n+1} + 1 \right]$$

$$= \begin{cases} \frac{4}{\pi n^{2}} & \text{if } n \text{ is odd} \\ 0 & \text{if } n \text{ is even} \end{cases}$$

Hence, $\pi - x = \frac{\pi}{2} + \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos(2n-1)x}{(2n-1)^2}$

$$x = \frac{\pi}{2} + \frac{4}{\pi} \left[\frac{\cos x}{1^2} + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \cdots \right]$$

(i) The Fourier sine series of f(x) is given by $\sum_{n=1}^{\infty} b_n \sin nx$ where b_n is given by

$$b_n = \frac{2}{\pi} \int_0^{\pi} (\pi - x) \sin nx \, dx$$
$$= \frac{2}{\pi} \left[-(\pi - x) \frac{\cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\pi}$$
$$= \frac{2}{\pi} \left[\frac{\pi}{n} \right] = \frac{2}{n}$$

Hence
$$\pi - x = 2\sum_{n=1}^{\infty} \frac{\sin nx}{n} = 2\left[\frac{\sin x}{1} + \frac{\sin 2x}{2} + \frac{\sin 3x}{3} + \cdots\right]$$

Problem 4. Find the half range cosine series for the function $f(x) = x^2$ in $0 \le x \le \pi$ and hence find the sum of the series $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots$

Solution.
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \ dx = \frac{2}{\pi} \int_0^{\pi} x^2 \ dx = \frac{2}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{2\pi^2}{3}$$

Hence $\frac{a_0}{2} = \frac{\pi^2}{3}$

Now,
$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx$$

$$= \frac{2}{\pi} \left[\frac{x^2 \sin nx}{n} + \frac{2x \cos nx}{n^2} - \frac{2 \sin nx}{n^3} \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{2\pi \cos nx}{n^2} \right]$$

$$= \frac{4(-1)^n}{n^2}$$

The cosine series for $f(x) = x^2$ is given by

$$x^{2} = \frac{\pi^{2}}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos nx$$

$$= \frac{\pi^{2}}{3} + 4 \left[-\frac{\cos x}{1^{2}} + \frac{\cos 2x}{2^{2}} - \frac{\cos 3x}{3^{2}} + \cdots \right]$$

$$= \frac{\pi^{2}}{3} - 4 \left[\frac{\cos x}{1^{2}} - \frac{\cos 2x}{2^{2}} + \frac{\cos 3x}{3^{2}} - \cdots \right]$$

Put x = 0 in the above result we get

$$0 = \frac{\pi^2}{3} - 4 \left[\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots \right]$$

Hence
$$\left[\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \cdots\right] = \frac{\pi^2}{12}$$
.

Problem 5. Obtain a cosine series for $f(x) = e^x$ in $0 < x < \pi$.

Solution.
$$a_0 = \frac{2}{\pi} \int_0^{\pi} f(x) \ dx = \frac{2}{\pi} \int_0^{\pi} e^x \ dx = \frac{2(e^{\pi} - 1)}{\pi}$$

Hence
$$\frac{a_0}{2} = \frac{(e^{\pi} - 1)}{\pi}$$

Now,
$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} e^x \cos nx \, dx$$

$$= \frac{2}{\pi} \left[\frac{e^x (\cos nx + n \sin nx)}{1^2 + n^2} \right]_0^{\pi}$$

$$= \frac{2}{\pi} \left[\frac{e^\pi \cos nx}{n^2 + 1} - \frac{1}{n^2 + 1} \right]$$

$$= \frac{2}{\pi} \left[\frac{e^\pi (-1)^n - 1}{n^2 + 1} \right]$$

Hence the cosine series for $f(x) = e^x$ in $0 < x < \pi$ is given by

$$e^{x} = \frac{e^{\pi} - 1}{\pi} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{[e^{\pi} (-1)^{n} - 1] \cos nx}{n^{2} + 1}$$

Problem 6. Find the Fourier sine series of the function $f(x) = \begin{cases} x & \text{in } 0 < x < \pi/2 \\ \pi - x & \text{in } \pi/2 < x < \pi \end{cases}$

Solution. The sine series for f(x) is given by $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$. Where

$$b_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \sin nx \ dx$$

Now,
$$b_n = \frac{2}{\pi} \int_0^{\pi/2} x \sin nx \ dx + \frac{2}{\pi} \int_{\pi/2}^{\pi} (\pi - x) \sin nx \ dx$$

$$= \frac{2}{\pi} \left[-\frac{x \cos nx}{n} + \frac{\sin nx}{n^2} \right]_0^{\frac{\pi}{2}} + \frac{2}{\pi} \left[-\frac{(\pi - x) \cos nx}{n} - \frac{\sin nx}{n^2} \right]_{\frac{\pi}{2}}^{\frac{\pi}{2}}$$

$$=\frac{2}{\pi}\left[-\frac{\pi}{2n}\cos\left(\frac{n\pi}{2}\right)+\frac{\sin(n\pi/2)}{n^2}\right]+\frac{2}{\pi}\left[\frac{\sin n\pi}{n^2}+\frac{\pi}{2n}\cos\left(\frac{n\pi}{2}\right)+\frac{1}{n^2}\sin\left(\frac{n\pi}{2}\right)\right]$$

$$= \frac{2}{\pi} \left[\frac{2}{n^2} \sin \left(\frac{n\pi}{2} \right) \right]$$

$$= \frac{4}{\pi n^2} \sin\left(\frac{n\pi}{2}\right).$$

Hence $f(x) = \frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{n\pi}{2}\right) \sin nx$

$$= \frac{4}{\pi} \left[\frac{\sin x}{1^2} + \frac{\sin \pi \sin x}{2^2} + \frac{\sin(3\pi/2)\sin 3x}{3^2} + \cdots \right]$$
$$= \frac{4}{\pi} \left[\frac{\sin x}{1^2} - \frac{\sin 3x}{3^2} + \frac{\sin 5x}{5^2} - \cdots \right]$$

Problem 7. Find the half range sine series for $f(x) = x(\pi - x)$ in $(0, \pi)$. Deduce that

$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots = \frac{\pi^3}{32}$$

Solution. The half range sine series for f(x) in $(0,\pi)$ is given by

$$f(x) = \sum_{n=1}^{\infty} b_n \sin nx$$
. Where $b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \ dx$

Now, $b_n = \frac{2}{\pi} \int_0^{\pi} x(\pi - x) \sin nx \ dx$

$$= \frac{2}{\pi} \left[(\pi x - x^2) \left(\frac{-\cos nx}{n} \right) - \left(\frac{-\sin nx}{n^2} \right) (\pi - 2x) + \frac{\cos nx}{n^3} (-2) \right]_0^{\pi}$$

(by using Bernoulli's formula)

$$= \frac{2}{\pi} \left[(-\pi^2 + \pi^2) \frac{\cos nx}{n} - \frac{2\cos nx}{n^3} + \frac{2}{n^3} \right]$$
$$= \frac{4}{\pi n^3} (1 - \cos n\pi)$$
$$= \frac{4}{\pi} \left[\frac{1 - (-1)^n}{n^3} \right]$$

Hence $f(x) = \sum_{n=1}^{\infty} \frac{4}{\pi} \left[\frac{1 - (-1)^n}{n^3} \right] \sin nx$

$$= \frac{4}{\pi} \left[\frac{2\sin x}{1^3} + \frac{2\sin 3x}{3^3} + \frac{2\sin 5x}{5^3} + \cdots \right]$$
$$= \frac{8}{\pi} \left[\frac{\sin x}{1^3} + \frac{\sin 3x}{3^3} + \frac{\sin 5x}{5^3} + \cdots \right]$$

Put $x = \frac{\pi}{2}$ in the above result we get

$$f\left(\frac{\pi}{2}\right) = \frac{8}{\pi} \left[\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \dots \right]$$

$$(ie)\frac{\pi}{2}\left(\pi - \frac{\pi}{2}\right) = \frac{8}{\pi} \left[\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \cdots\right]$$
$$(ie)\frac{\pi^2}{4} = \frac{8}{\pi} \left[\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \cdots\right]$$
$$\frac{1}{1^3} - \frac{1}{3^3} + \frac{1}{5^3} - \cdots = \frac{\pi^3}{32}$$

Problem 8. Find the Fourier constant b_1 for the function $x \sin x$ in the half range $0 < x < \pi$.

Solution.

Let $f(x) - x \sin x$. Then the half range Fourier series for f(x) is given by $f(x) = \sum_{n=1}^{\infty} b_n \sin nx$. Where b_n is given by the formula

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \ dx$$
$$= \frac{2}{\pi} \int_0^{\pi} (x \sin x) \sin nx \ dx....(1)$$

Put n = 1 in (1) and we get

$$b_1 = \frac{2}{\pi} \int_0^{\pi} x \sin^2 x \, dx$$

$$= \frac{2}{\pi} \int_0^{\pi} \frac{x(1 - \cos 2x)}{2} \, dx$$

$$= \frac{1}{\pi} \left[\frac{x^2}{2} - \frac{x \sin 2x}{2} - \frac{\cos 2x}{4} \right]_0^{\pi}$$

$$= \frac{1}{\pi} \left(\frac{\pi^2}{2} - \frac{1}{4} + \frac{1}{4} \right)$$

Hence the Fourier constant $b_1 = \frac{\pi}{2}$.

Exercise.

1. Obtain the half range sine series for the following functions

(i)
$$f(x) = x^2$$
 in $0 < x < 1$

(ii)
$$f(x) = e^x$$
 in $0 < x < 1$

(iii)
$$f(x) = x^3 \text{ in } 0 < x < \pi$$

(iv)f(x) =
$$\begin{cases} \frac{1}{4} - x & in0 < x < \frac{1}{2} \\ x - \frac{3}{4} & in \quad \frac{1}{2} < x < 1 \end{cases}$$

$$(v) f(x) = \cos 2x \text{ in } 0 < x < \pi$$

2. Obtain the half range cosine series for the following functions.

(i)
$$f(x) = \sin x$$
 in $0 < x < \pi$

(ii)
$$f(x) = \begin{cases} 0 & in & 0 < x < 1 \\ 1 & in & 1 < x < 2 \end{cases}$$

(iii)
$$f(x) = \begin{cases} 1 & in & 0 < x < a/2 \\ -1 & in & a/2 < x < a \end{cases}$$

5.4 FOURIER SERIES -ARBITRARY RANGE

So far, we have delt with Fourier series expansions having periods 2π or π . But in many of the problems the functions may have arbitrary periods(not necessarily 2π). We now obtain Euler's formulae for Fourier coefficients for functions having period 2l where l is any positive integer.

Suppose f(x) is defined in the interval (-l, l).

Let $z = \frac{\pi x}{l}$. Hence $x = \frac{lz}{\pi}$. Also, when x = -l we have $z = -\pi$ and when x = l we have $z = \pi$ Hence, the Fourier series of F(z) is given by

$$F(z) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nz + b_n \sin nz).$$

Then we have $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} F(z) dz$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(z) \cos nz \ dz \ and \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} F(z) \sin nz \ dz$$

Hence
$$f\left(\frac{lz}{\pi}\right) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nz + b_n \sin nz)$$

Where $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{lz}{\pi}\right) dz$;

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{lz}{\pi}\right) \cos nz \ dz \ and \ b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{lz}{\pi}\right) \sin nz \ dz$$

We now go back to the original variable x by using the transformations $x = \frac{lz}{\pi}$ so that $dx = \frac{l}{\pi}dz$.

Thus

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{l}\right) + b_n \sin\left(\frac{n\pi x}{l}\right) \right]$$

Where

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(x) dx$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

Note. The above formulae are valid for any interval of length 2*l*.

Solved Problems.

Problem 1. If f(x) = x is defined in the interval -l < x < l with period 2l. Find the Fourier expansion of f(x).

Solution. Since f(x) = x is an odd function $a_n = 0$ for all $n \ge 0$.

Now,
$$b_n = \frac{2}{l} \int_{-l}^{l} x \sin\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{2}{l} \left[-\frac{lx}{n\pi} \cos\left(\frac{n\pi x}{l}\right) + \frac{l^2}{n^2\pi^2} \sin\left(\frac{n\pi x}{l}\right) \right]_0^l \text{ (Bernoulli's formula)}$$

$$= \frac{2}{l} \left(\frac{-l^2 \cos n\pi}{n\pi} \right)$$

$$= 2 \left(\frac{-l(-1)^n}{n\pi} \right)$$

$$= \frac{2(-1)^{n+1}l}{n\pi}$$

Hence the Fourier series is $x = \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n+1} l}{n} \sin \left(\frac{n \pi x}{l} \right) \right].$

Problem 2. Find the Fourier series for $f(x) = x^2$ in -1 < x < 1.

Solution. Since f(x) is an even function $b_n = 0$ for all n

Now,
$$a_0 = 2 \int_0^1 f(x) dx = 2 \int_0^1 x^2 dx = 2 \left[\frac{x^3}{3} \right]_0^1 = \frac{2}{3}$$

$$a_n = 2 \int_0^1 x^2 \cos n\pi x dx$$

$$= 2 \left[\frac{x^2 \sin n\pi x}{n\pi} + \frac{2x \cos n\pi x}{n^2 \pi^2} - \frac{2 \sin n\pi x}{n^3 \pi^3} \right]_0^1$$

$$= 2\left(\frac{2\cos n\pi}{n^2\pi^2}\right)$$
$$= \frac{4(-1)^n}{n^2\pi^2}$$

Hence the Fourier series for f(x) in (-1,1) is given by

$$x^{2} = \frac{1}{3} + \frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \left[\frac{(-1)^{n} \cos n\pi x}{n^{2}} \right]$$

Problem 3. Find a Fourier sine series for f(x) = ax + b in 0 < x < l.

Solution. Since we have to find only the sine series of the Fourier series for the given function, we find only the Fourier coefficients b_n which is got from the formula

$$b_n = \frac{2}{l} \int_{-l}^{l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{2}{l} \int_{-l}^{l} (ax + b) \sin\left(\frac{n\pi x}{l}\right) dx$$

$$= \frac{2}{l} \left[\frac{-(ax+b)l\cos\left(\frac{n\pi x}{l}\right)}{n\pi} + \frac{al^2\sin\left(\frac{n\pi x}{l}\right)}{n^2\pi^2} \right]_0^l$$

$$= \frac{2}{l} \left[\frac{-l(al+b)l\cos n\pi}{n\pi} + \frac{bl}{n\pi} \right] \text{ (justify)}$$

$$= \frac{2}{l} \left[\frac{b-(al+b)(-1)^n}{n} \right] \text{ (verify)}$$

Hence the sine series for f(x) is given by

$$ax + b = \frac{2}{\pi} \sum_{n=1}^{\infty} \left[\frac{b - (al + b)(-1)^n}{n} \right] \sin\left(\frac{n\pi x}{l}\right).$$

Problem 4. Find the half range Fourier sine series of f(x) = x in 0 < x < 2.

Solution. The half range Fourier sine series for f(x) is given by

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi}{2}\right)$$

Where
$$b_n = \frac{2}{2} \int f(x) \sin\left(\frac{n\pi}{2}\right)$$

$$= \int_{0}^{2} \sin\left(\frac{n\pi}{2}\right) dx$$

$$= \left[\frac{-2\cos\left(\frac{n\pi x}{2}\right)}{n\pi} + \frac{4\sin\left(\frac{n\pi x}{2}\right)}{n^{2}\pi^{2}}\right]_{0}^{2}$$

$$= \left(\frac{-4\cos n\pi}{n\pi}\right)$$

$$= -\frac{4}{\pi} \left[\frac{(-1)^{n}}{n}\right]$$

Hence the Fourier series for f(x) is given by

$$x = -\frac{4}{\pi} \sum_{n=1}^{\infty} \left[\frac{(-1)^n}{n} \sin\left(\frac{n\pi x}{2}\right) \right]$$

Exercises.

Find the Fourier series to represent the following functions:

1.
$$f(x) = \begin{cases} -1 & \text{in } -2 < x < 0 \\ 1 & \text{in } 0 < x < 2 \end{cases}$$

2.
$$f(x) = x^2 - 2$$
 in $-2 < x < 2$

3.
$$f(x) = 2x - x^2$$
 in $0 < x < 3$

4.
$$f(x) = \begin{cases} 1 & \text{in } -1 < x < 1 \\ 0 & \text{in } 1 < x < 3 \end{cases}$$

5.
$$f(x) = (x-1)^2$$
 in $0 < x < 1$

Study Learning Material Prepared by

Dr. S.N. LEENA NELSON M.Sc., M.Phil., Ph.D.

Associate Professor & Head, Department of Mathematics,

Women's Christian College, Nagercoil – 629 001,

Kanyakumari District, Tamilnadu, India.